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Notational Preliminaries
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The change-point model

Sequence of rv X1, X2, . . . with cdf
{

F(i)
}

and a certain
(unknown) time point m = change-point with

F(i) =

{
F0 , i < m
F1 , i ≥ m

.

Example: F0 = N (µ0, 1) , F1 = N (µ1, 1) + independence
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Control charts

Different names, same concepts:
control charts, change point detection, continuous inspection,
surveillance, monitoring, fault detection ...

Aim:
Detect rapidly and reliably, whether there appeared
change-point m!

Transformation
{

Xi
}

i=1,2,...,n → Zn and

Stopping time L = min
{

n ∈ N : Zn /∈ O = [c∗l , c∗u]
}

.
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Control chart performance measures
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The dominator – Average Run Length (ARL)

Notation: Em(.) expectation for given change-point m.

Definition:

ARL =

{
E∞(L) , process in control
E1(L) , process out of control

.

Note that for dealing with the ARL, the sequence {Xi} is
(strong) stationary with the same probability law for all i . Thus,
e. g., for any µ (and not only µ0 and µ1)

ARL = Eµ(L) = L .
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Sort of history of performance measuring

1 SHEWHART (192X,193X) similar to tests: error
probabilities,

2 AROIAN/LEVENE (1950) average spacing number and
average efficiency number,

3 GIRSHICK/RUBIN (1952) Bayesian framework,
4 PAGE (1954) introduced term ARL as the average number of

articles inspected between two successive occasions when rectifying
action is taken.

5 BARNARD (1959) If it were thought worthwile one could use
methods analogous to these given by Page (1954) and estimate the
average run length as a function of the departure from the target value.
However, as I have already indicated, such computations could be
regarded as having the function merely of avoiding unemployment
amongst mathematicians.
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History etc. II

6 SHIRYAEV (1961/3) random change-point model

P(M = m) =

{
π , m = 0
(1− π) (1− p)m−1p , m > 0

, π ∈ [0, 1) , p ∈ (0, 1)

and minimize{
Pπ,p(L < M) + c Eπ,p(L−M)+ for all s. t. L

Eπ,p(L−M |L ≥ M) for all s. t. L with Pπ,p(L < M) ≤ α

7. ... 9. E∞(L) ≥ A

7 ROBERTS (1966) D := lim
m→∞

Em
(
L−m + 1 |L ≥ m

)
(”steady-state ARL”, R. ”replaced”∞ by 9)

8 LORDEN (1971) W := sup
m≥1

ess sup Em
(
(L−m + 1)+ | Fm−1

)
9 POLLAK/SIEGMUND (1975) DPS := sup

m≥1
Em

(
L−m + 1 |L ≥ m

)
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History etc. III

10 FRISÉN (1992,...)

detection prob. P(L = t |M ≤ t) and false alarm prob.
P(L = t |M > t),
expected delay ED(m) = E

(
(L−m)+ |M = m

)
,

conditional expected delay CED(m) = ED(m)/P(L ≥ m),
summarized expected delay ED = E

(
(L−M)+

)
,

probability of successful detection
PSD(t , d) = P(L−M < d |L ≥ M, M = m),
Predictive Value (of an alarm) PV (t) = P(M ≤ t |L = t).

11 BASSEVILLE/NIKIFOROV (1993)

mean time between false alarms Eµ0(L) – ARL,
conditional mean delay D∗m = Eµ1

(
L−m + 1 |L ≥ m,Fm−1

)
,

worst mean delay W = sup
m

ess sup D∗m – LORDEN,

mean delay Eµ1(L) – ARL.
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History etc. IV

12 LAI (1995) It is therefore much more relevant to consider
(a) the probability of no false alarm during a typical (steady

state) segment of the base-line period and
(b) the expected delay in signaling a correct alarm,

instead of the ARL which is the mean duration to the first alarm
assuming a constant in-control or out-of-control value.
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Schemes under consideration
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Collection of one-sided schemes
CUSUM: PAGE (1954)

Zn = max
˘

0, Zn−1 + Xn − k
¯

, Z0 = z0 ,

L = inf {n ∈ N : Zn > h}
`
k = (µ0 + µ1)/2

´
EWMA: ROBERTS (1959) (reflecting barrier – WALDMANN (1986), GAN (1993))

Zn = max
˘

z∗reflect, (1− λ) Zn−1 + λ Xn
¯

, Z0 = z0 ,

L = inf
n

n ∈ N : Zn > c
p

λ/(2− λ)
o

, z∗reflect = zr
p

λ/(2− λ)

GRSR: GIRSHICK/RUBIN (1952), SHIRYAEV (1963/76), ROBERTS (1966)

Zn = (1 + Zn−1) exp
`
(µ1 − µ0) (Xn − k)

´
, Z0 = z0 ,

L = inf {n ∈ N : Zn > g}

Bayes (LR): SHIRYAEV (...), FRISÉN/DE MARÉ (1991)

Zn =
πn

1− πn
=

1
1− p

(p + Zn−1) exp
`
(µ1 − µ0) (Xn − k)

´
, Z0 = z0 ,

L = inf {n ∈ N : Zn > g}
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Addenda to the previous collection

CUSUM is optimal in terms of LORDEN’S W,
(steady-state started) GRSR is asymptotically optimal for
DPS of POLLAK/SIEGMUND,
Bayes/LR is optimal for the Bayesian designs,
originally, the GIRSHICK/RUBIN procedure looked like:

Zn =
1

1− p
(1 + Zn−1) exp

(
(µ1 − µ0) (Xn − k)

)
,

Both, GRSR and Bayes/LR are treated in the log-version
so that all 4 schemes are related to the log-likelihood ratio.
Finally, there is of course the one-sided SHEWHART chart.
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Calculation
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Connections between the considered measures

Shewhart chart

W = D = DPS = L = E1(L) = Em(L−m + 1|L ≥ m).

CUSUM

W = DPS = L,

modifications: D = DPS 6= L.

But:
EWMA

All measures provide different values.

Bayesian schemes and measures.
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Measures to be considered and calculated

(zero-state) ARL L,
steady-state ARL D,

false alarm probability P(L < M) =
∞∑

m=1

Pm(L < m)P(M = m),

expected delay

ED = E
(
L−M+1 |L ≥ M

)
=

∞∑
m=1

Em
(
L−m+1 |L ≥ m

)
P(M = m),

predictive value

PV (t) = P(M ≤ t |L = t) ,

= 1− P(L = t |M > t) P(M > t)
P(L = t)

.

... kind of reconciling Bayesian and non-Bayesian
measures and schemes.
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= 1− P(L = t |M > t) P(M > t)
P(L = t)

.

... kind of reconciling Bayesian and non-Bayesian
measures and schemes.
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Some computational details

Key: All is based on accurate computation of the run-length
survival function Pm(L > n) and the geometric tail of the
run-length distribution.

L ≈
N−1X
n=0

P1/∞(L > n) +
P1/∞(L > N)

1− %N
,

Dm = Em
`
L−m + 1 | L ≥ m

´
≈

 
N−1X

n=m−1

Pm(L > n) +
Pm(L > N)

1− %N

!ffi
Pm(L > m − 1) ,

D ≈ D200 ,

ED ≈
199X

m=1

Dm p (1− p)m−1 + D200 (1− p)199 ,

PV (t) ≈ 1− P∞(L = t) (1− p)t

tX
m=1

Pm(L = t) p (1− p)m−1 + P∞(L = t) (1− p)t

.
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Some computational details II

Let Mn(z̃, z) be the transition kernel of the scheme and fn(z)
some “quasi-density” of Zn, that is (for z ∈ (−∞, ucl])

f1(z) = M1(z0, z) ,

fn+1(z) =

∫ ucl

−∞
fn(z̃)Mn(z̃, z) dz̃ ,

Pm(L > n) =

∫ ucl

−∞
fn(z̃) dz̃ .

The integrals are replaced by Gauss-Legendre quadratures.

See WOODALL (1983) (CUSUM) or KNOTH (2003) (EWMA
with time-varying limits) for more details.
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Results
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Results – overview

in-control ARL vs. false alarm probability α for
p ∈ {0.1, 0.01, 0.001},
expected delay ED vs. α for same p,
steady- and zero-state out-of-control ARL vs. α for same p,
α and ED vs. p for in-control ARL
{10, 20, 50, 100, 200, 500, 1000, 2000, 5000}, CUSUM only,
predictive value PV (t) for t = 1, 2, . . . , 40 and above p
values.

µ0 = 0, µ1 = 1, λ = 0.1.
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in-control ARL vs. false alarm probability α
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in-control ARL vs. false alarm probability α II
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Remarks in-control ARL

Only slight differences between the 4 schemes.
They disappear completely for decreasing p.
The Bayes scheme has the lowest values followed by
GRSR, CUSUM, and EWMA.
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expected delay ED vs. false alarm probability α
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steady-state ARL vs. false alarm probability α
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zero-state ARL vs. false alarm probability α
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Remarks out-of-control ARL like measures

Again, only slight differences between the 4 schemes.
They become smaller for decreasing p except for EWMA in
general and for CUSUM and EWMA for the zero-state ARL.
For the expected delay ED and for the steady-state ARL,
the Bayes scheme has the lowest values followed by
GRSR, CUSUM, and EWMA.
For the zero-state ARL, EWMA is the best followed by
CUSUM, GRSR, and Bayes.
For Bayes and GRSR, steady-state ARL is smaller than
the ED, for EWMA is it vice versa, while for CUSUM it
seems to be stable.
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false alarm probability α vs. Bayes p for CUSUM only
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delays vs. Bayes p for CUSUM only
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Remarks CUSUM with certain in-control ARL values

For the considered in-control ARL values, many
reasonable (p, α) configurations are possible.
The delay (both the expected delay ED and the
steady-state ARL) behaves nearly robust against varying p.
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predictive value for some Bayes p
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predictive value for some Bayes p
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predictive value for some Bayes p
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Some numbers explaining shape of previous PV (t)

L0 p
α

CUSUM EWMA GRSR Bayes
100 .1 .07 .07 .06 .05

.01 .49 .49 .49 .49

.001 .91 .91 .91 .91
370 .1 .02 .01 .01 .01

.01 .20 .20 .20 .20

.001 .73 .73 .73 .73
1000 .1 .00 .00 .00 .00

.01 .08 .08 .08 .08

.001 .50 .50 .50 .50
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Remarks predictive value PV (t)

Results are similar to FRISÉN/WESSMAN (1999), now also
for larger in-control ARL values and smaller p.
For the reasonable (p, L0) configurations
((0.1, 100), (0.1, 1000), (0.01, 1000)), Bayes and GRSR
have nearly constant PV (t) values, while EWMA and
CUSUM have considerably decreased values for small t .
The behavior of CUSUM is quite surprising, because it
starts from worst-case (that is usually softened by a
head-start).
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In the light of daily practice
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Daily Practice: Fast Conclusions

All schemes are equal.
Bayesian approach allows judgment of risk, but the related
schemes do not offer “added value”.
Except the embedded robustness of CUSUM against
inertia effects no further “unique selling point” could be
seen.
If one is beyond Shewhart charts (and Western Electric or
other Runs Rules), then any scheme could be deployed
(given that all the other possible trouble is addressed like
correlated data, mixture data, wrongly picked models, for
wrong out-of-control µ designed, etc.)
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Daily Practice: Obstacles of various kinds

Software restrictions: AMTC’s (WinSPC) and AMD’s
(ASPECT) SPC software packages offer only Shewhart
charts and many different Runs Rules flavors. The
Infineon/Qimonda package (SPACE) allows usage also of
EWMA (and MA) charts. It seems so that this fits to the
commercial SPC software market in general.
Only a small number of SPC users are aware of at least
one of the 4 schemes.
The opinion leaders do propagate only Shewhart control
charts (with and w/o Runs Rules) with few exceptions.
Organizational requests: Enable engineers to do
(sophisticated) SPC w/o further contributions of a
statistician (usually one statistician per company)!
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Daily Practice: Obstacles of various kinds II

Big confusion about control limits and specification limits.
“What should one do after an alarm?”
Development and tuning of the in-control models is very
challenging. Most of the time is needed for picking the right
parameters (a dry etch or an eBeam writing process
provides thousands of time series on a 1-second time grid
per job). One keyword in semiconductor industry (of course
not only there) is FDC (fault detection and classification).
Handy rules for setting up control chart design needed.
See next slide for two-sided EWMA control chart setup.
(quick and dirty 3

q`
λ/(2− λ)

´
instead of deploying all those nice

approaches such as Markov chain, integral equation etc.)
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EWMA: Quick and dirty vs. sophisticated
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Summary
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Summary

Most of the performance measures of change-point
detection schemes could be calculated accurately.
The more sophisticated schemes/control charts exhibit
similar properties.
For practice, there is no clear favorite.
Only one of the considered scheme (EWMA) is available in
commercial SPC software packages (it is the worst among
the considered 4).
Current challenge of change-point detection in practice is
the choice of a reasonable in-control model including a
reliable understanding of “detectable” deviations (write
down a suitable OCAP [out-of-control action plan]).
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