

Control charting normal variance – reflections, curiosities, and recommendations

Sven Knoth

September 2007

Outline

1 Introduction

2 Modelling

3 Two-sided EWMA charts for variance

4 Conclusions

Introduction

Aim of control charting is to detect deviations from stability

ADVANCED MASK 🗾 TECHNOLOGY CENTER

- as fast as possible
- without too many false alarms.

Parameters characterizing stability are

- mean level,
- scale (uniformity, variance, repeatability),

• ...

Why variance?

- Ensure appropriate control limits for mean chart.
- Detect detoriated uniformity.
- WOODALL & MONTGOMERY (1999) demanded it ;-)

Why variance?

- Ensure appropriate control limits for mean chart.
- Detect detoriated uniformity.
- WOODALL & MONTGOMERY (1999) demanded it ;-)

Two examples from a Mask Shop

1 CD (critical dimension) uniformity:

- Measure a certain number (20 ... 200) of, e.g., lines of nominal size 200 *nm* on a single plate,
- calculate sample mean \overline{CD} and standard deviation S_{CD} ,
- chart both.
- 2 Gauge repeatibility CD-SEM (scanning electron microscope):
 - Repeat a few times (e. g., 5) the measurement of one given line,
 - calculate standard deviation S_R ,
 - chart it.

Advanced mask Technology center

Two examples from a Mask Shop

- 1 CD (critical dimension) uniformity:
 - Measure a certain number (20 ... 200) of, e.g., lines of nominal size 200 *nm* on a single plate,
 - calculate sample mean \bar{CD} and standard deviation S_{CD} ,
 - chart both.
- Q Gauge repeatibility CD-SEM (scanning electron microscope):
 - Repeat a few times (e. g., 5) the measurement of one given line,

- calculate standard deviation S_R ,
- chart it.

- Variance components: YASHCHIN (1994), WOODALL & THOMAS (1995), SRIVASTAVA (1997),
- individual measurements, fixed or choosable batch sizes,
- small or large batch sizes,

- Variance components: YASHCHIN (1994), WOODALL & THOMAS (1995), SRIVASTAVA (1997),
- individual measurements, fixed or choosable batch sizes,
- small or large batch sizes,

- Variance components: YASHCHIN (1994), WOODALL & THOMAS (1995), SRIVASTAVA (1997),
- individual measurements, fixed or choosable batch sizes,
- small or large batch sizes,

- Variance components: YASHCHIN (1994), WOODALL & THOMAS (1995), SRIVASTAVA (1997),
- individual measurements, fixed or choosable batch sizes,
- small or large batch sizes,

Modelling

Sequence $\{X_{ij}\}$, i = 1, 2, ... and j = 1, 2, ..., n > 1with $X_{ij} \sim \mathcal{N}(\mu, \sigma^2)$, independence.

The change-point model: For a certain unknown m

$$\sigma^2 = \begin{cases} \sigma_0^2 = 1 & , i < m \\ \sigma_1^2 \neq \sigma_0^2 & , i \ge m \end{cases}$$

Modelling

Sequence $\{X_{ij}\}$, i = 1, 2, ... and j = 1, 2, ..., n > 1with $X_{ij} \sim \mathcal{N}(\mu, \sigma^2)$, independence.

The change-point model: For a certain unknown m

$$\sigma^2 = \begin{cases} \sigma_0^2 = 1 & , i < m \\ \sigma_1^2 \neq \sigma_0^2 & , i \ge m \end{cases}$$

Advanced mask rechnology center

Pre-processing of batch data

In order to monitor σ the usual suspects are

$$\begin{split} R_{i} &= \max_{j} X_{ij} - \min_{j} X_{ij} ,\\ S_{i}^{2} &= \frac{1}{n-1} \sum_{j=1}^{n} \left(X_{ij} - \bar{X}_{i} \right)^{2} \quad , \ \bar{X}_{i} &= \frac{1}{n} \sum_{j=1}^{n} X_{ij} ,\\ S_{i} &= \sqrt{S_{i}^{2}} , \end{split}$$

$$\begin{split} & IS_i^2 = \log S_i^2 \,, \\ & abcS_i^2 = a + b \, \log(S_i^2 + c) \,. \end{split}$$

Pre-processing of batch data

ADVANCED MASK TI TECHNOLOGY CENTER

In order to monitor σ the usual suspects are

$$\begin{aligned} R_i &= \max_j X_{ij} - \min_j X_{ij} ,\\ S_i^2 &= \frac{1}{n-1} \sum_{j=1}^n \left(X_{ij} - \bar{X}_i \right)^2 \ , \ \bar{X}_i = \frac{1}{n} \sum_{j=1}^n X_{ij} ,\\ S_i &= \sqrt{S_i^2} , \end{aligned}$$

$$\begin{split} & IS_i^2 = \log S_i^2 \,, \\ & abcS_i^2 = a + b \, \log(S_i^2 + c) \,. \end{split}$$

Why log?

1 BOX, HUNTER & HUNTER (1978) recommended it.

ADVANCED MASK 🗾 TECHNOLOGY CENTER

- 2 It transforms scale-change into level change.
- **3** The variance of log S^2 does not depend on σ .
- 4 New statistic behaves nearly "normally" and
- **5** is, of course, more symmetric.

Is this reasonable?

Why log?

1 BOX, HUNTER & HUNTER (1978) recommended it.

ADVANCED MASK 🗾 TECHNOLOGY CENTER

- 2 It transforms scale-change into level change.
- **3** The variance of log S^2 does not depend on σ .
- 4 New statistic behaves nearly "normally" and
- **5** is, of course, more symmetric.

Is this reasonable?

Who is who in $\log S^2$ -SPC

ADVANCED MASK T TECHNOLOGY CENTER

- Crowder & Hamilton (1992), EWMA,
- Chang & Gan (1994), EWMA,
- Chang & Gan (1995), CUSUM,

• ...

- Amin & Wilde (2000), Crosier-type CUSUM,
- Castagliola (2005), $a + b \log(S^2 + c)$ EWMA,

Short list of comparison papers

- TUPRAH & NCUBE (1987),
- Srivastava & Chow (1992),
- Lowry, Champ & Woodall (1995),
- MITTAG, STEMANN & TEWES (1998),
- Acosta-Mejía, Pignatiello Jr. & Rao (1999),
- Poetrodjojo, Abdollahian & Debnath (2002),

Further transformations

• HAWKINS (1981), $\frac{|(X-\mu_0)/\sigma_0|^{1/2} - .82218}{.34914},$ • APR (1999), $\Phi^{-1} \left[F_{\chi^2_{n-1}} \left(\frac{(n-1)S^2}{\sigma_0^2} \right) \right],$ • APR (1999), $\left[\left(S^2/\sigma_0^2 \right)^{1/3} - \left(1 - \frac{2}{9(n-1)} \right) \right] / \sqrt{\frac{2}{9(n-1)}},$ • ...

Further transformations

- Hawkins (1981), $\frac{|(X-\mu_0)/\sigma_0|^{1/2}-.82218}{.34914}$,
- APR (1999), $\Phi^{-1}\left[F_{\chi^2_{n-1}}\left(\frac{(n-1)S^2}{\sigma_0^2}\right)\right]$,

. . .

• APR (1999), $\left[\left(S^2 / \sigma_0^2 \right)^{1/3} - \left(1 - \frac{2}{9(n-1)} \right) \right] / \sqrt{\frac{2}{9(n-1)}},$

Advanced mask
 Technology center

Objects of this talk

• are two-sided EWMA (exponentially weighted moving average) charts,

in order to validate the symmetry story.

Objects of this talk

- are two-sided EWMA (exponentially weighted moving average) charts,
 - in order to validate the symmetry story.

Two-sided EWMA charts for variance

,

$$V_{i} \in \left\{S_{i}^{2}, S_{i}, R_{i}, \log S_{i}^{2}, a + b \log(S_{i}^{2} + c)\right\}$$

$$Z_{0} = z_{0} = E_{\infty}(V_{i}),$$

$$Z_{i} = (1 - \lambda) Z_{i-1} + \lambda V_{i} , i \ge 1,$$

$$L = \min\left\{i \in \mathbb{N} : Z_{i} \notin [c_{i}, c_{u}]\right\}.$$

$$Z_{i} = (1 - \lambda) z_{0} + \lambda \sum_{j=1}^{i} (1 - \lambda)^{i-j} V_{j},$$

$$(Z_{i}) = \frac{\lambda}{2 - \lambda} \left(1 - (1 - \lambda)^{2i}\right) Var(V_{i}).$$

Two-sided EWMA charts for variance

$$V_{i} \in \left\{S_{i}^{2}, S_{i}, R_{i}, \log S_{i}^{2}, a + b \log(S_{i}^{2} + c)\right\},$$

$$Z_{0} = z_{0} = E_{\infty}(V_{i}),$$

$$Z_{i} = (1 - \lambda) Z_{i-1} + \lambda V_{i} , i \ge 1,$$

$$L = \min\left\{i \in \mathbb{N} : Z_{i} \notin [c_{i}, c_{u}]\right\}.$$

$$Z_{i} = (1 - \lambda) z_{0} + \lambda \sum_{j=1}^{i} (1 - \lambda)^{i-j} V_{j},$$

$$(Z_{i}) = \frac{\lambda}{2 - \lambda} \left(1 - (1 - \lambda)^{2i}\right) Var(V_{i}).$$

Two-sided EWMA charts for variance

$$V_{i} \in \left\{S_{i}^{2}, S_{i}, R_{i}, \log S_{i}^{2}, a + b \log(S_{i}^{2} + c)\right\},$$

$$Z_{0} = z_{0} = E_{\infty}(V_{i}),$$

$$Z_{i} = (1 - \lambda) Z_{i-1} + \lambda V_{i} , i \ge 1,$$

$$L = \min\left\{i \in \mathbb{N} : Z_{i} \notin [c_{l}, c_{u}]\right\}.$$

$$Z_{i} = (1 - \lambda) z_{0} + \lambda \sum_{j=1}^{i} (1 - \lambda)^{i-j} V_{j},$$

$$Var(Z_{i}) = \frac{\lambda}{2 - \lambda} \left(1 - (1 - \lambda)^{2i}\right) Var(V_{i}).$$

Advanced mask Technology center

1 Calibrate all schemes to give $E_{\infty}(L) = 500$.

- 2 Deploy "ARL-unbiased" designs (see APR (1999)).
- $fieldsymbol{6}$ Look for "optimal" λ , that is, minimize

 $\mathcal{L}_{0.75} + \mathcal{L}_{1.25}$ and $\mathcal{L}_{0.5} + \mathcal{L}_{1.5}$, respectively,

Advanced mask T TECHNOLOGY CENTER

among $\lambda \in \{0.02, 0.03, \dots, 0.99, 1.00\}.$

(d) Optimal values for λ are:

			statist		
	R	S^2	S	$ S^2 $	abcS ²
$\mathcal{L}_{0.75} + \mathcal{L}_{1.25}$				0.07	
$\mathcal{L}_{0.5} + \mathcal{L}_{1.5}$	0.23	0.25	0.24	0.20	0.27

- 1 Calibrate all schemes to give $E_{\infty}(L) = 500$.
- **2** Deploy "ARL-unbiased" designs (see APR (1999)).
- **3** Look for "optimal" λ , that is, minimize

 $\mathcal{L}_{0.75} + \mathcal{L}_{1.25}$ and $\mathcal{L}_{0.5} + \mathcal{L}_{1.5}$, respectively,

ADVANCED MASK TECHNOLOGY CENTER

among $\lambda \in \{0.02, 0.03, \dots, 0.99, 1.00\}.$

(d) Optimal values for λ are:

			statist		
	R	S^2	S	$ S^2 $	abcS ²
$\mathcal{L}_{0.75} + \mathcal{L}_{1.25}$				0.07	
$\mathcal{L}_{0.5} + \mathcal{L}_{1.5}$	0.23	0.25	0.24	0.20	0.27

- 1 Calibrate all schemes to give $E_{\infty}(L) = 500$.
- **2** Deploy "ARL-unbiased" designs (see APR (1999)).
- **3** Look for "optimal" λ , that is, minimize

 $\mathcal{L}_{0.75} + \mathcal{L}_{1.25}$ and $\mathcal{L}_{0.5} + \mathcal{L}_{1.5}$, respectively,

ADVANCED MASK T TECHNOLOGY CENTER

among $\lambda \in \{0.02, 0.03, \dots, 0.99, 1.00\}.$

 $\begin{array}{c|c|c|c|c|c|c|c|} \hline \textbf{0} & \textbf{Optimal values for } \lambda \text{ are:} \\ \hline & statistic \\ \hline & case & R & S^2 & S & IS^2 & abcS^2 \\ \hline & \mathcal{L}_{0.75} + \mathcal{L}_{1.25} & 0.08 & 0.08 & 0.08 & 0.07 & 0.08 \\ & \mathcal{L}_{0.5} + \mathcal{L}_{1.5} & 0.23 & 0.25 & 0.24 & 0.20 & 0.27 \\ \hline \end{array}$

- 1 Calibrate all schemes to give $E_{\infty}(L) = 500$.
- **2** Deploy "ARL-unbiased" designs (see APR (1999)).
- **3** Look for "optimal" λ , that is, minimize

 $\mathcal{L}_{0.75} + \mathcal{L}_{1.25}$ and $\mathcal{L}_{0.5} + \mathcal{L}_{1.5}$, respectively,

ADVANCED MASK TIECHNOLOGY CENTER

among $\lambda \in \{0.02, 0.03, \dots, 0.99, 1.00\}.$

4 Optimal values for λ are:

	statistic					
case	R	S^2	S	S^2	abcS ²	
$L_{0.75} + L_{1.25}$	0.08	0.08	0.08	0.07	0.08	
$\mathcal{L}_{0.5} + \mathcal{L}_{1.5}$	0.23	0.25	0.24	0.20	0.27	

Illustration for S^2 EWMA

Competition for minimal $\mathcal{L}_{0.75} + \mathcal{L}_{1.25}$

Competition for minimal $\mathcal{L}_{0.75} + \mathcal{L}_{1.25}$ II

Competition for minimal $\mathcal{L}_{0.75} + \mathcal{L}_{1.25}$ III

~	statistic						
0	IS^2	abcS ²	S^2	5	R		
0.4	4.374	5.251	6.575	5.143	5.249		
0.5	5.939	6.389	7.619	6.374	6.514		
0.6	8.547	8.409	9.438	8.459	8.660		
0.7	13.74	12.59	13.17	12.63	12.96		
0.75	18.78	16.56	16.81	16.67	17.14		
0.8	27.94	23.92	23.44	24.04	24.78		
0.9	96.70	82.24	76.74	82.26	84.96		
1.0			500.000				
1.1	90.80	83.53	81.16	82.43	86.43		
1.2	30.74	27.27	25.61	26.61	27.88		
1.25	22.44	19.61	18.06	19.04	19.89		
1.3	17.67	15.26	13.77	14.73	15.35		
1.4	12.54	10.60	9.206	10.12	10.51		
1.5	9.866	8.190	6.864	7.740	8.017		
1.6	8.235	6.735	5.460	6.295	6.509		

Advanced mask 🗾 Technology Center

Competition for minimal $\mathcal{L}_{0.5} + \mathcal{L}_{1.5}$

Competition for minimal $\mathcal{L}_{0.5} + \mathcal{L}_{1.5}$ II

Competition for minimal $\mathcal{L}_{0.5} + \mathcal{L}_{1.5}$ III

~	statistic						
0	IS^2	abcS ²	S^2	5	R		
0.3	2.662	3.120	4.025	3.114	3.190		
0.4	3.677	3.763	4.460	3.824	3.935		
0.5	5.425	5.014	5.516	5.113	5.249		
0.6	8.997	7.678	7.703	7.736	7.896		
0.7	18.22	14.79	13.35	14.47	14.63		
0.8	49.01	39.91	33.51	37.94	37.96		
0.9	174.1	155.7	137.4	148.8	148.9		
1.0		500.000					
1.1	136.3	139.3	138.4	133.0	137.7		
1.2	37.89	38.31	38.44	36.39	38.39		
1.3	17.99	17.30	17.07	16.57	17.54		
1.4	11.34	10.40	10.00	10.02	10.59		
1.5	8.299	7.327	6.862	7.072	7.465		
1.6	6.611	5.674	5.180	5.466	5.760		
1.7	5.552	4.664	4.158	4.474	4.707		

Advanced mask Technology Center

1 None of the statistics provides ARL performance that is symmetric in σ .

- 2 The log S^2 seems to be the worst approach, even beaten by R.
- 3 The newer $a + b \log(S^2 + c)$ is considerably better than $\log S^2$. But, these efforts do not really pay off.
- ④ There is no reason to deploy log based approaches at all. This is supported also by one-sided results (both EWMA and CUSUM).
- Solution For application, one should prefer S² and S. The latter is the most popular quantity at AMTC.

- **1** None of the statistics provides ARL performance that is symmetric in σ .
- **2** The log S^2 seems to be the worst approach, even beaten by R.
- 3 The newer $a + b \log(S^2 + c)$ is considerably better than $\log S^2$. But, these efforts do not really pay off.
- ④ There is no reason to deploy log based approaches at all. This is supported also by one-sided results (both EWMA and CUSUM).
- Solution For application, one should prefer S² and S. The latter is the most popular quantity at AMTC.

- **1** None of the statistics provides ARL performance that is symmetric in σ .
- **2** The log S^2 seems to be the worst approach, even beaten by R.
- **3** The newer $a + b \log(S^2 + c)$ is considerably better than $\log S^2$. But, these efforts do not really pay off.
- There is no reason to deploy log based approaches at all. This is supported also by one-sided results (both EWMA and CUSUM).
- For application, one should prefer S² and S. The latter is the most popular quantity at AMTC.

- **1** None of the statistics provides ARL performance that is symmetric in σ .
- **2** The log S^2 seems to be the worst approach, even beaten by R.
- **3** The newer $a + b \log(S^2 + c)$ is considerably better than $\log S^2$. But, these efforts do not really pay off.
- There is no reason to deploy log based approaches at all. This is supported also by one-sided results (both EWMA and CUSUM).
- For application, one should prefer S² and S. The latter is the most popular quantity at AMTC.

- **1** None of the statistics provides ARL performance that is symmetric in σ .
- **2** The log S^2 seems to be the worst approach, even beaten by R.
- **3** The newer $a + b \log(S^2 + c)$ is considerably better than $\log S^2$. But, these efforts do not really pay off.
- There is no reason to deploy log based approaches at all. This is supported also by one-sided results (both EWMA and CUSUM).
- 6 For application, one should prefer S² and S. The latter is the most popular quantity at AMTC.

Backup

Some upper variance charts

Slightly modified and shortened update of Table 5 in CHANG & GAN (1995) – the EWMA schemes are also one-sided and equipped with a lower reflecting barrier, see KNOTH (2005) for more details.

	CUSUM-S ²	CUSUM-In S ²	EWMA- S^2	EWMA-In S^2
	$k_{h} = 1.285$	$k_{h}^{\ln} = 0.309$	$\lambda=0.15$	$\lambda^{ ext{ln}}=0.28$
σ	$h_{h} = 2.922$	$h_{h}^{\ln} = 1.210$	c = 2.4831	$c^{ m ln}=1.4085$
1	100.0	100.0	100.0	100.0
1.1	27.9	30.2	27.9	30.0
1.2	12.8	13.8	12.9	13.8
1.3	7.75	8.15	7.86	8.26
1.4	5.47	5.63	5.57	5.76
1.5	4.22	4.29	4.30	4.43
2	2.08	2.11	2.11	2.22

Numerical handling of the sample range R

BLAND, GILBER, KAPADIA & OWEN (1966):

$$P(R/\sigma \leq r) = \int_{\infty}^{\infty} n \, \phi(x) \big(\Phi(x+r) - \Phi(x) \big)^{n-1} \, dx \, .$$

ARL integral equations and it's solution

$$\mathcal{L}(z) = 1 + \int_{c_l}^{c_u} \mathcal{L}(x) \frac{1}{\lambda} f\left(\frac{x - (1 - \lambda)z}{\lambda}\right) dx \quad , \ z \in [c_l, c_u] \,.$$

- 1 log S²: Gauss-Legendre Nyström,
- 2 others: collocation with piece-wise Chebyshev polynomials,
- 3 validated with Monte Carlo with 10^8 replicates.

Advanced mask **f** technology center

The λ hunt for minimal out-of-control ARL

Advanced mask rechnology center