Control charting normal variance - reflections, curiosities, and recommendations

Sven Knoth

September 2007

Outline

(1) Introduction
(2) Modelling
(3) Two-sided EWMA charts for variance
(4) Conclusions

Introduction

Aim of control charting is to detect deviations from stability

- as fast as possible
- without too many false alarms.

Parameters characterizing stability are

- mean level,
- scale (uniformity, variance, repeatability),
- ...

Why variance?

- Ensure appropriate control limits for mean chart.
- Detect detoriated uniformity.
- Woodall \& Montgomery (1999) demanded it ;-)

Why variance?

- Ensure appropriate control limits for mean chart.
- Detect detoriated uniformity.
- Woodall \& Montgomery (1999) demanded it ;-)

Two examples from a Mask Shop

(1) CD (critical dimension) uniformity:

- Measure a certain number (20 ... 200) of, e. g., lines of nominal size 200 nm on a single plate,
- calculate sample mean $\overline{C D}$ and standard deviation $S_{C D}$,
- chart both.
(2) Gauge repeatibility - CD-SEM (scanning electron microscope):
- Repeat a few times (e. g., 5) the measurement of one given line,
- calculate standard deviation S_{R},
- chart it.

Two examples from a Mask Shop

(1) CD (critical dimension) uniformity:

- Measure a certain number (20 ... 200) of, e. g., lines of nominal size 200 nm on a single plate,
- calculate sample mean $\overline{C D}$ and standard deviation $S_{C D}$,
- chart both.
(2) Gauge repeatibility - CD-SEM (scanning electron microscope):
- Repeat a few times (e. g., 5) the measurement of one given line,
- calculate standard deviation S_{R},
- chart it.

Some remarks about variance monitoring

- Variance components: Yashchin (1994), Woodall \& Thomas (1995), Srivastava (1997),
- individual measurements, fixed or choosable batch sizes,
- small or large batch sizes,

Focus: Small batch sizes larger 1, one variance component only.

Some remarks about variance monitoring

- Variance components: Yashchin (1994), Woodall \& Thomas (1995), Srivastava (1997),
- individual measurements, fixed or choosable batch sizes,
- small or large batch sizes,

Focus: Small batch sizes larger 1, one variance component only.

Some remarks about variance monitoring

- Variance components: Yashchin (1994), Woodall \& Thomas (1995), Srivastava (1997),
- individual measurements, fixed or choosable batch sizes,
- small or large batch sizes,

Focus: Small batch sizes larger 1, one variance component only.

Some remarks about variance monitoring

- Variance components: Yashchin (1994), Woodall \& Thomas (1995), Srivastava (1997),
- individual measurements, fixed or choosable batch sizes,
- small or large batch sizes,

Focus: Small batch sizes larger 1, one variance component only.

Modelling

Sequence $\left\{X_{i j}\right\}, i=1,2, \ldots$ and $j=1,2, \ldots, n>1$ with $X_{i j} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, independence.

The change-point model: For a certain unknown m

$$
\sigma^{2}= \begin{cases}\sigma_{0}^{2}=1 & , i<m \\ \sigma_{1}^{2} \neq \sigma_{0}^{2} & , i \geq m\end{cases}
$$

Modelling

Sequence $\left\{X_{i j}\right\}, i=1,2, \ldots$ and $j=1,2, \ldots, n>1$ with $X_{i j} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, independence.

The change-point model: For a certain unknown m

$$
\sigma^{2}= \begin{cases}\sigma_{0}^{2}=1 & , i<m \\ \sigma_{1}^{2} \neq \sigma_{0}^{2} & , i \geq m\end{cases}
$$

Pre-processing of batch data

In order to monitor σ the usual suspects are

$$
\begin{aligned}
R_{i} & =\max _{j} X_{i j}-\min _{j} X_{i j}, \\
S_{i}^{2} & =\frac{1}{n-1} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2} \quad, \bar{X}_{i}=\frac{1}{n} \sum_{j=1}^{n} X_{i j}, \\
S_{i} & =\sqrt{S_{i}^{2}}, \\
1 S_{i}^{2} & =\log S_{i}^{2}, \\
a b c S_{i}^{2} & =a+b \log \left(S_{i}^{2}+c\right) .
\end{aligned}
$$

Pre-processing of batch data

In order to monitor σ the usual suspects are

$$
\begin{aligned}
R_{i} & =\max _{j} X_{i j}-\min _{j} X_{i j} \\
S_{i}^{2} & =\frac{1}{n-1} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2} \quad, \bar{X}_{i}=\frac{1}{n} \sum_{j=1}^{n} X_{i j} \\
S_{i} & =\sqrt{S_{i}^{2}} \\
I S_{i}^{2} & =\log S_{i}^{2} \\
a b c S_{i}^{2} & =a+b \log \left(S_{i}^{2}+c\right) .
\end{aligned}
$$

Why log?

(1) Box, Hunter \& Hunter (1978) recommended it.
(2) It transforms scale-change into level change.
(3) The variance of $\log S^{2}$ does not depend on σ.
(4) New statistic behaves nearly "normally" and
(5) is, of course, more symmetric.

Why log?

(1) Box, Hunter \& Hunter (1978) recommended it.
(2) It transforms scale-change into level change.
(3) The variance of $\log S^{2}$ does not depend on σ.
(4) New statistic behaves nearly "normally" and
(5) is, of course, more symmetric.

Is this reasonable?

Who is who in $\log S^{2}$-SPC

- Crowder \& Hamilton (1992), EWMA,
- Chang \& Gan (1994), EWMA,
- Chang \& Gan (1995), CUSUM,
- Amin \& Wilde (2000), Crosier-type CUSUM,
- Castagliola (2005), $a+b \log \left(S^{2}+c\right)$ EWMA,
- ...

Short list of comparison papers

- Tuprah \& Ncube (1987),
- Srivastava \& Chow (1992),
- Lowry, Champ \& Woodall (1995),
- Mittag, Stemann \& Tewes (1998),
- Acosta-Mejía, Pignatiello Jr. \& Rao (1999),
- Poetrodjojo, Abdollahian \& Debnath (2002),
- ...

Further transformations

- HAWKINS $(1981), \frac{\left|\left(X-\mu_{0}\right) / \sigma_{0}\right|^{1 / 2}-.82218}{.34914}$, - $\operatorname{APR}(1999), \Phi^{-1}\left[F_{\chi_{n-1}^{2}}\left(\frac{(n-1) S^{2}}{\sigma_{0}^{2}}\right)\right]$, - APR (1999),

Further transformations

- Hawkins (1981), $\frac{\left|\left(X-\mu_{0}\right) / \sigma_{0}\right|^{1 / 2}-.82218}{.34914}$,
- $\operatorname{APR}(1999), \Phi^{-1}\left[F_{\chi_{n-1}^{2}}\left(\frac{(n-1) S^{2}}{\sigma_{0}^{2}}\right)\right]$,
- $\operatorname{APR}(1999),\left[\left(S^{2} / \sigma_{0}^{2}\right)^{1 / 3}-\left(1-\frac{2}{9(n-1)}\right)\right] / \sqrt{\frac{2}{9(n-1)}}$,

Objects of this talk

- are two-sided EWMA (exponentially weighted moving average) charts, in order to validate the symmetry story.

Objects of this talk

- are two-sided EWMA (exponentially weighted moving average) charts,
in order to validate the symmetry story.

Two-sided EWMA charts for variance

$$
\begin{aligned}
V_{i} & \in\left\{S_{i}^{2}, S_{i}, R_{i}, \log S_{i}^{2}, a+b \log \left(S_{i}^{2}+c\right)\right\}, \\
Z_{0} & =z_{0}=E_{\infty}\left(V_{i}\right), \\
Z_{i} & =(1-\lambda) Z_{i-1}+\lambda V_{i}, i \geq 1, \\
L & =\min \left\{i \in \mathbb{N}: Z_{i} \notin\left[c_{i}, c_{u}\right]\right\} . \\
Z_{i} & =(1-\lambda) z_{0}+\lambda \sum_{j=1}^{i}(1-\lambda)^{i-j} V_{j}, \\
\operatorname{Var}\left(Z_{i}\right) & =\frac{\lambda}{2-\lambda}\left(1-(1-\lambda)^{2 i}\right) \operatorname{Var}\left(V_{i}\right) .
\end{aligned}
$$

Two-sided EWMA charts for variance

$$
\begin{aligned}
V_{i} & \in\left\{S_{i}^{2}, S_{i}, R_{i}, \log S_{i}^{2}, a+b \log \left(S_{i}^{2}+c\right)\right\}, \\
Z_{0} & =z_{0}=E_{\infty}\left(V_{i}\right), \\
Z_{i} & =(1-\lambda) Z_{i-1}+\lambda V_{i}, i \geq 1, \\
L & =\min \left\{i \in \mathbb{N}: Z_{i} \notin\left[c_{l}, c_{u}\right]\right\} .
\end{aligned}
$$

$$
\operatorname{Var}\left(Z_{i}\right)=\frac{\lambda}{2-\lambda}\left(1-(1-\lambda)^{2 i}\right) \operatorname{Var}\left(V_{i}\right) .
$$

Two-sided EWMA charts for variance

$$
\begin{aligned}
V_{i} & \in\left\{S_{i}^{2}, S_{i}, R_{i}, \log S_{i}^{2}, a+b \log \left(S_{i}^{2}+c\right)\right\}, \\
Z_{0} & =z_{0}=E_{\infty}\left(V_{i}\right), \\
Z_{i} & =(1-\lambda) Z_{i-1}+\lambda V_{i}, i \geq 1, \\
L & =\min \left\{i \in \mathbb{N}: Z_{i} \notin\left[c_{i}, c_{u}\right]\right\} . \\
Z_{i} & =(1-\lambda) z_{0}+\lambda \sum_{j=1}^{i}(1-\lambda)^{i-j} V_{j}, \\
\operatorname{Var}\left(Z_{i}\right) & =\frac{\lambda}{2-\lambda}\left(1-(1-\lambda)^{2 i}\right) \operatorname{Var}\left(V_{i}\right) .
\end{aligned}
$$

Comparison study

(1) Calibrate all schemes to give $E_{\infty}(L)=500$.
(2) Deploy "ARL-unbiased" designs (see APR (1999)).
(3) Look for "optimal" λ, that is, minimize

$$
\mathcal{C}_{0.75}+\mathcal{L}_{1.25} \text { and } \mathcal{C}_{0.5}+\mathcal{L}_{1.5} \text {, respectively, }
$$

among $\lambda \in\{0.02,0.03, \ldots, 0.99,1.00\}$
(aptimal values for λ are:
statistic

case	R	S^{2}	S	I 2	abcS ${ }^{2}$
$\mathcal{L}_{0.75}+\mathcal{L}_{1.25}$	0.08	0.08	0.08	0.07	0.08
$\mathcal{L}_{0.5}+\mathcal{L}_{1.5}$	0.23	0.25	0.24	0.20	0.27

Comparison study

(1) Calibrate all schemes to give $E_{\infty}(L)=500$.
(2) Deploy "ARL-unbiased" designs (see APR (1999)).
(3) Look for "optimal" λ, that is, minimize $\mathcal{L}_{0.75}+\mathcal{L}_{1.25}$ and $\mathcal{L}_{0.5}+\mathcal{L}_{1.5} \quad$, respectively, among $\lambda \in\{0.02,0.03, \ldots, 0.99,1.00\}$
(4) Optimal values for λ are:
statistic

case	\boldsymbol{R}	S^{2}	S	IS 2	abcS
$\mathcal{L}_{0.75}+\mathcal{L}_{1.25}$	0.08	0.08	0.08	0.07	0.08
$\mathcal{L}_{0.5}+\mathcal{L}_{1.5}$	0.23	0.25	0.24	0.20	0.27

Comparison study

(1) Calibrate all schemes to give $E_{\infty}(L)=500$.
(2 Deploy "ARL-unbiased" designs (see APR (1999)).
(3) Look for "optimal" λ, that is, minimize

$$
\mathcal{L}_{0.75}+\mathcal{L}_{1.25} \quad \text { and } \quad \mathcal{L}_{0.5}+\mathcal{L}_{1.5} \quad \text {, respectively, }
$$ among $\lambda \in\{0.02,0.03, \ldots, 0.99,1.00\}$.

(4) Optimal values for λ are:

Comparison study

(1) Calibrate all schemes to give $E_{\infty}(L)=500$.
(2) Deploy "ARL-unbiased" designs (see APR (1999)).
(3) Look for "optimal" λ, that is, minimize
$\mathcal{L}_{0.75}+\mathcal{L}_{1.25}$ and $\mathcal{L}_{0.5}+\mathcal{L}_{1.5}$, respectively, among $\lambda \in\{0.02,0.03, \ldots, 0.99,1.00\}$.
(4) Optimal values for λ are:

case	statistic				
	R	S^{2}	S	$I S^{2}$	$a b c S^{2}$
$\mathcal{L}_{0.75}+\mathcal{L}_{1.25}$	0.08	0.08	0.08	0.07	0.08
$\mathcal{L}_{0.5}+\mathcal{L}_{1.5}$	0.23	0.25	0.24	0.20	0.27

Illustration for S^{2} EWMA

Competition for minimal $\mathcal{L}_{0.75}+\mathcal{L}_{1.25}$

Competition for minimal $\mathcal{L}_{0.75}+\mathcal{L}_{1.25}$ II

Competition for minimal $\mathcal{L}_{0.75}+\mathcal{L}_{1.25}$ III

σ	statistic				
	$I S^{2}$	$a b c S^{2}$	S^{2}	S	R
0.4	$\mathbf{4 . 3 7 4}$	5.251	6.575	5.143	5.249
0.5	$\mathbf{5 . 9 3 9}$	6.389	7.619	6.374	6.514
0.6	8.547	$\mathbf{8 . 4 0 9}$	9.438	8.459	8.660
0.7	13.74	$\mathbf{1 2 . 5 9}$	13.17	12.63	12.96
0.75	18.78	$\mathbf{1 6 . 5 6}$	16.81	16.67	17.14
0.8	27.94	23.92	$\mathbf{2 3 . 4 4}$	24.04	24.78
0.9	96.70	82.24	$\mathbf{7 6 . 7 4}$	82.26	84.96
1.0	500.000				
1.1	90.80	83.53	$\mathbf{8 1 . 1 6}$	82.43	86.43
1.2	30.74	27.27	$\mathbf{2 5 . 6 1}$	26.61	27.88
1.25	22.44	19.61	$\mathbf{1 8 . 0 6}$	19.04	19.89
1.3	17.67	15.26	$\mathbf{1 3 . 7 7}$	14.73	15.35
1.4	12.54	10.60	$\mathbf{9 . 2 0 6}$	10.12	10.51
1.5	9.866	8.190	$\mathbf{6 . 8 6 4}$	7.740	8.017
1.6	8.235	6.735	$\mathbf{5 . 4 6 0}$	6.295	6.509

Competition for minimal $\mathcal{L}_{0.5}+\mathcal{L}_{1.5}$

Competition for minimal $\mathcal{L}_{0.5}+\mathcal{L}_{1.5}$ II

Competition for minimal $\mathcal{L}_{0.5}+\mathcal{L}_{1.5}$ III

σ	statistic				
	$I S^{2}$	$a b c S^{2}$	S^{2}	S	R
0.3	$\mathbf{2 . 6 6 2}$	3.120	4.025	3.114	3.190
0.4	$\mathbf{3 . 6 7 7}$	3.763	4.460	3.824	3.935
0.5	5.425	$\mathbf{5 . 0 1 4}$	5.516	5.113	5.249
0.6	8.997	$\mathbf{7 . 6 7 8}$	7.703	7.736	7.896
0.7	18.22	14.79	$\mathbf{1 3 . 3 5}$	14.47	14.63
0.8	49.01	39.91	$\mathbf{3 3 . 5 1}$	37.94	37.96
0.9	174.1	155.7	$\mathbf{1 3 7 . 4}$	$\mathbf{1 4 8 . 8}$	148.9
1.0	500.000				
1.1	136.3	139.3	138.4	$\mathbf{1 3 3 . 0}$	137.7
1.2	37.89	38.31	38.44	$\mathbf{3 6 . 3 9}$	38.39
1.3	17.99	17.30	17.07	$\mathbf{1 6 . 5 7}$	17.54
1.4	11.34	10.40	$\mathbf{1 0 . 0 0}$	10.02	10.59
1.5	8.299	7.327	$\mathbf{6 . 8 6 2}$	7.072	7.465
1.6	6.611	5.674	$\mathbf{5 . 1 8 0}$	5.466	5.760
1.7	5.552	4.664	$\mathbf{4 . 1 5 8}$	4.474	4.707

Conclusions

(1) None of the statistics provides ARL performance that is symmetric in σ.
(2) The $\log S^{2}$ seems to be the worst approach, even beaten by R.
(3) The newer $a+b \log \left(S^{2}+c\right)$ is considerably better than $\log S^{2}$. But, these efforts do not really pay off.
(4) There is no reason to deploy log based approaches at all. This is supported also by one-sided results (both EWMA and CUSUM).
(3) For application, one should prefer S^{2} and S. The latter is the most popular quantity at AMTC.

Conclusions

(1) None of the statistics provides ARL performance that is symmetric in σ.
(2) The $\log S^{2}$ seems to be the worst approach, even beaten by R.
(3) The newer $a+b \log \left(S^{2}+c\right)$ is considerably better than $\log S^{2}$. But, these efforts do not really pay off.
(4) There is no reason to deploy log based approaches at all. This is supported also by one-sided results (both EWMA and CUSUM).
(5) For application, one should prefer S^{2} and S. The latter is the most popular quantity at AMTC.

Conclusions

(1) None of the statistics provides ARL performance that is symmetric in σ.
(2) The $\log S^{2}$ seems to be the worst approach, even beaten by R.
(3) The newer $a+b \log \left(S^{2}+c\right)$ is considerably better than $\log S^{2}$. But, these efforts do not really pay off.
(4) There is no reason to deploy log based approaches at all. This is supported also by one-sided results (both EWMA and CUSUM).
(5) For application, one should prefer S^{2} and S. The latter is the most popular quantity at AMTC.

Conclusions

(1) None of the statistics provides ARL performance that is symmetric in σ.
(2) The $\log S^{2}$ seems to be the worst approach, even beaten by R.
(3) The newer $a+b \log \left(S^{2}+c\right)$ is considerably better than $\log S^{2}$. But, these efforts do not really pay off.
(4) There is no reason to deploy \log based approaches at all. This is supported also by one-sided results (both EWMA and CUSUM).
(3) For application, one should prefer S^{2} and S. The latter is the most popular quantity at AMTC.

Conclusions

(1) None of the statistics provides ARL performance that is symmetric in σ.
(2) The $\log S^{2}$ seems to be the worst approach, even beaten by R.
(3) The newer $a+b \log \left(S^{2}+c\right)$ is considerably better than $\log S^{2}$. But, these efforts do not really pay off.
(4) There is no reason to deploy \log based approaches at all. This is supported also by one-sided results (both EWMA and CUSUM).
(5) For application, one should prefer S^{2} and S. The latter is the most popular quantity at AMTC.

Backup

Some upper variance charts

Slightly modified and shortened update of Table 5 in Chang \& Gan (1995) the EWMA schemes are also one-sided and equipped with a lower reflecting barrier, see Knoth (2005) for more details.

	CUSUM- S^{2}	CUSUM- $\ln S^{2}$	EWMA- S^{2}	EWMA- $\ln S^{2}$
	$k_{h}=1.285$	$k_{h}^{\ln }=0.309$	$\lambda=0.15$	$\lambda^{\ln }=0.28$
σ	$h_{h}=2.922$	$h_{h}^{\text {n }}=1.210$	$c=2.4831$	$c^{\text {nn }}=1.4085$
1	100.0	100.0	100.0	100.0
1.1	27.9	30.2	27.9	30.0
1.2	12.8	13.8	12.9	13.8
$\mathbf{1 . 3}$	7.75	$\mathbf{8 . 1 5}$	$\mathbf{7 . 8 6}$	$\mathbf{8 . 2 6}$
1.4	5.47	5.63	5.57	5.76
1.5	4.22	4.29	4.30	4.43
2	2.08	2.11	2.11	2.22

Numerical handling of the sample range R

Bland, Gilber, Kapadia \& Owen (1966):

$$
P(R / \sigma \leq r)=\int_{\infty}^{\infty} n \phi(x)(\Phi(x+r)-\Phi(x))^{n-1} d x
$$

ARL integral equations and it's solution

$$
\mathcal{L}(z)=1+\int_{c_{1}}^{c_{u}} \mathcal{L}(x) \frac{1}{\lambda} f\left(\frac{x-(1-\lambda) z}{\lambda}\right) d x \quad, \quad z \in\left[c_{l}, c_{u}\right] .
$$

(1) $\log S^{2}$: Gauss-Legendre Nyström,
(2) others: collocation with piece-wise Chebyshev polynomials,
(3) validated with Monte Carlo with 10^{8} replicates.

The λ hunt for minimal out-of-control ARL

