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Introduction

Aim of control charting is to detect deviations from stability

• as fast as possible

• without too many false alarms.

Parameters characterizing stability are

• mean level,

• scale (uniformity, variance, repeatability),

• ...



Why variance?

• Ensure appropriate control limits for mean chart.

• Detect detoriated uniformity.

• Woodall & Montgomery (1999) demanded it ;-)
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Two examples from a Mask Shop

1 CD (critical dimension) uniformity:
• Measure a certain number (20 ... 200) of, e. g., lines of

nominal size 200 nm on a single plate,
• calculate sample mean C̄D and standard deviation SCD ,
• chart both.

2 Gauge repeatibility – CD-SEM (scanning electron
microscope):
• Repeat a few times (e. g., 5) the measurement of one given

line,
• calculate standard deviation SR ,
• chart it.
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Some remarks about variance monitoring

• Variance components: Yashchin (1994), Woodall &
Thomas (1995), Srivastava (1997),

• individual measurements, fixed or choosable batch sizes,

• small or large batch sizes,

Focus: Small batch sizes larger 1, one variance component only.
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Modelling

Sequence {Xij}, i = 1, 2, . . . and j = 1, 2, . . . , n > 1

with Xij ∼ N (µ, σ2), independence.

The change-point model: For a certain unknown m

σ2 =

{
σ2

0 = 1 , i < m

σ2
1 6= σ2

0 , i ≥ m
.
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Pre-processing of batch data

In order to monitor σ the usual suspects are

Ri = max
j

Xij −min
j

Xij ,

S2
i =

1

n − 1

n∑
j=1

(
Xij − X̄i

)2
, X̄i =

1

n

n∑
j=1

Xij ,

Si =
√

S2
i ,

lS2
i = log S2

i ,

abcS2
i = a + b log(S2

i + c) .
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Why log?

1 Box, Hunter & Hunter (1978) recommended it.

2 It transforms scale-change into level change.

3 The variance of log S2 does not depend on σ.

4 New statistic behaves nearly “normally” and

5 is, of course, more symmetric.

Is this reasonable?
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Figure 1: Normalized density plots

solid line − in−control model, σσ= 1

dashed lines − out−of−control models,

left σσ=0.75, right σσ= 1.25
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Who is who in log S2-SPC

• Crowder & Hamilton (1992), EWMA,

• Chang & Gan (1994), EWMA,

• Chang & Gan (1995), CUSUM,

• Amin & Wilde (2000), Crosier-type CUSUM,

• Castagliola (2005), a + b log(S2 + c) EWMA,

• ...



Short list of comparison papers

• Tuprah & Ncube (1987),

• Srivastava & Chow (1992),

• Lowry, Champ & Woodall (1995),

• Mittag, Stemann & Tewes (1998),

• Acosta-Mej́ıa, Pignatiello Jr. & Rao (1999),

• Poetrodjojo, Abdollahian & Debnath (2002),

• ...



Further transformations

• Hawkins (1981), |(X−µ0)/σ0|1/2−.82218
.34914 ,

• APR (1999), Φ−1
[
Fχ2

n−1

(
(n−1)S2

σ2
0

)]
,

• APR (1999),
[(

S2/σ2
0

)1/3 −
(
1− 2

9(n−1)

)] /√
2

9(n−1) ,

• ...
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Objects of this talk

• are two-sided EWMA (exponentially weighted moving
average) charts,

in order to validate the symmetry story.
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Two-sided EWMA charts for variance

Vi ∈
{
S2

i ,Si ,Ri , log S2
i , a + b log(S2

i + c)
}

,

Z0 = z0 = E∞(Vi ) ,

Zi = (1− λ) Zi−1 + λ Vi , i ≥ 1 ,

L = min
{
i ∈ N : Zi /∈ [cl , cu]

}
.

Zi = (1− λ) z0 + λ

i∑
j=1

(1− λ)i−j Vj ,

Var(Zi ) =
λ

2− λ

(
1− (1− λ)2i

)
Var(Vi ) .
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Comparison study

1 Calibrate all schemes to give E∞(L) = 500.

2 Deploy “ARL-unbiased” designs (see APR (1999)).

3 Look for “optimal” λ, that is, minimize

L0.75 + L1.25 and L0.5 + L1.5 , respectively,

among λ ∈ {0.02, 0.03, . . . , 0.99, 1.00}.

4 Optimal values for λ are:

case
statistic

R S2 S lS2 abcS2

L0.75 + L1.25 0.08 0.08 0.08 0.07 0.08
L0.5 + L1.5 0.23 0.25 0.24 0.20 0.27
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Illustration for S2 EWMA
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Competition for minimal L0.75 + L1.25
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Competition for minimal L0.75 + L1.25 II
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Competition for minimal L0.75 + L1.25 III

σ
statistic

lS2 abcS2 S2 S R

0.4 4.374 5.251 6.575 5.143 5.249
0.5 5.939 6.389 7.619 6.374 6.514
0.6 8.547 8.409 9.438 8.459 8.660
0.7 13.74 12.59 13.17 12.63 12.96

0.75 18.78 16.56 16.81 16.67 17.14

0.8 27.94 23.92 23.44 24.04 24.78
0.9 96.70 82.24 76.74 82.26 84.96

1.0 500.000

1.1 90.80 83.53 81.16 82.43 86.43
1.2 30.74 27.27 25.61 26.61 27.88

1.25 22.44 19.61 18.06 19.04 19.89

1.3 17.67 15.26 13.77 14.73 15.35
1.4 12.54 10.60 9.206 10.12 10.51
1.5 9.866 8.190 6.864 7.740 8.017
1.6 8.235 6.735 5.460 6.295 6.509



Competition for minimal L0.5 + L1.5
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Competition for minimal L0.5 + L1.5 II
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Competition for minimal L0.5 + L1.5 III

σ
statistic

lS2 abcS2 S2 S R

0.3 2.662 3.120 4.025 3.114 3.190
0.4 3.677 3.763 4.460 3.824 3.935

0.5 5.425 5.014 5.516 5.113 5.249

0.6 8.997 7.678 7.703 7.736 7.896
0.7 18.22 14.79 13.35 14.47 14.63
0.8 49.01 39.91 33.51 37.94 37.96
0.9 174.1 155.7 137.4 148.8 148.9

1.0 500.000

1.1 136.3 139.3 138.4 133.0 137.7
1.2 37.89 38.31 38.44 36.39 38.39
1.3 17.99 17.30 17.07 16.57 17.54
1.4 11.34 10.40 10.00 10.02 10.59

1.5 8.299 7.327 6.862 7.072 7.465

1.6 6.611 5.674 5.180 5.466 5.760
1.7 5.552 4.664 4.158 4.474 4.707



Conclusions

1 None of the statistics provides ARL performance that is
symmetric in σ.

2 The log S2 seems to be the worst approach, even beaten by R.

3 The newer a + b log(S2 + c) is considerably better than
log S2. But, these efforts do not really pay off.

4 There is no reason to deploy log based approaches at all. This
is supported also by one-sided results (both EWMA and
CUSUM).

5 For application, one should prefer S2 and S . The latter is the
most popular quantity at AMTC.
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Backup



Some upper variance charts

Slightly modified and shortened update of Table 5 in Chang & Gan (1995) –

the EWMA schemes are also one-sided and equipped with a lower reflecting

barrier, see Knoth (2005) for more details.

CUSUM-S2 CUSUM-lnS2 EWMA-S2 EWMA-lnS2

kh = 1.285 k ln
h = 0.309 λ = 0.15 λln = 0.28

σ hh = 2.922 hln
h = 1.210 c = 2.4831 c ln = 1.4085

1 100.0 100.0 100.0 100.0
1.1 27.9 30.2 27.9 30.0
1.2 12.8 13.8 12.9 13.8
1.3 7.75 8.15 7.86 8.26
1.4 5.47 5.63 5.57 5.76
1.5 4.22 4.29 4.30 4.43
2 2.08 2.11 2.11 2.22



Numerical handling of the sample range R

Bland, Gilber, Kapadia & Owen (1966):

P(R/σ ≤ r) =

∫ ∞

∞
n φ(x)

(
Φ(x + r)− Φ(x)

)n−1
dx .



ARL integral equations and it’s solution

L(z) = 1 +

∫ cu

cl

L(x)
1

λ
f

(
x − (1− λ) z

λ

)
dx , z ∈ [cl , cu] .

1 log S2: Gauss-Legendre Nyström,

2 others: collocation with piece-wise Chebyshev polynomials,

3 validated with Monte Carlo with 108 replicates.



The λ hunt for minimal out-of-control
ARL
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λ = 0.000 042,

c = 0.000 064 375 308,

Ê∞(L) = 250.103±0.091,

Ê1(L) = 1.3628± 0.0000,
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P∞(L = 1) ≈ 0.4!
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