ADVANCED MASK

TECHNOLOGY CENTER

EWMA control charts for monitoring normal variance

Sven Knoth

Fifth Annual Meeting of ENBIS
Newcastle, September 2005

ADVANCED MASK

Outline

1. Variance monitoring,
2. EWMA,
3. Numerical challenges,
4. Application,
5. Conclusions.

ADVANCED MASK

TECHNOLOGY CENTER

Statistics \& Monitoring

Statistical Process Control (SPC)	industrial statistics
Change Point Detection Schemes	mathematical statistics
Surveillance	biostatistics
Structural Breaks	econometrics

ADVANCED MASK

TECHNOLOGY CENTER

Objective of "Control Charting"

Woodall/Montgomery (1999)
... in the area of control charting and SPC. As a general definition, we include in this area any statistical method designed to detect changes in a process over time.

ADVANCED MASK

TECHNOLOGY CENTER

Change Point Model (for the mean)

- $\left\{X_{i j}\right\}$ - series of random variables with $\operatorname{cdf}\left\{P_{i}\right\}$, $j=1,2, \ldots, n, n-$ subgroup size,

ADVANCED MASK

TECHNOLOGY CENTER

Change Point Model (for the mean)

- $\left\{X_{i j}\right\}$ - series of random variables with $\operatorname{cdf}\left\{P_{i}\right\}$, $j=1,2, \ldots, n, n-$ subgroup size,
- assumptions: $P_{i}(x)=\Phi\left(\left(x-\mu_{(i)}\right) / \sigma_{(i)}\right)$, independence,

ADVANCED MASK

Change Point Model (for the mean)

- $\left\{X_{i j}\right\}$ - series of random variables with $\operatorname{cdf}\left\{P_{i}\right\}$, $j=1,2, \ldots, n, n-$ subgroup size,
- assumptions: $P_{i}(x)=\Phi\left(\left(x-\mu_{(i)}\right) / \sigma_{(i)}\right)$, independence,
- model:

$$
\mu_{(i)}=\left\{\begin{array}{ll}
\mu_{0} & , i<m \\
\mu_{1} & , i \geq m
\end{array}, \sigma_{(i)}=\sigma_{0}\right.
$$

with unkown parameter m (change point),

ADVANCED MASK

Change Point Model (for the mean)

- $\left\{X_{i j}\right\}$ - series of random variables with $\operatorname{cdf}\left\{P_{i}\right\}$, $j=1,2, \ldots, n, n-$ subgroup size,
- assumptions: $P_{i}(x)=\Phi\left(\left(x-\mu_{(i)}\right) / \sigma_{(i)}\right)$, independence,
- model:

$$
\mu_{(i)}=\left\{\begin{array}{ll}
\mu_{0} & , i<m \\
\mu_{1} & , i \geq m
\end{array}, \sigma_{(i)}=\sigma_{0}\right.
$$

with unkown parameter m (change point),

- more formal objective of SPC:
detect m as fast and reliable as possible.

ADVANCED MASK

TECHNOLOGY CENTER

Variance monitoring

- variance within samples (e.g., uniformity measures),

ADVANCED MASK

TECHNOLOGY CENTER

Variance monitoring

- variance within samples (e.g., uniformity measures),
- sample statistics such as S^{2}, S, R or certain robust estimators, e. g.

$$
S_{i}^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2}
$$

ADVANCED MASK

TECHNOLOGY CENTER

Variance monitoring

- variance within samples (e.g., uniformity measures),
- sample statistics such as S^{2}, S, R or certain robust estimators, e. g.

$$
S_{i}^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2}
$$

- change point model:

$$
\sigma_{(i)}^{2}= \begin{cases}\sigma_{0}^{2} & , i<m \\ \sigma_{1}^{2} & , i \geq m\end{cases}
$$

ADVANCED MASK

TECHNOLOGY CENTER

Variance monitoring

- variance within samples (e.g., uniformity measures),
- sample statistics such as S^{2}, S, R or certain robust estimators, e. g.

$$
S_{i}^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2}
$$

- change point model:

$$
\sigma_{(i)}^{2}= \begin{cases}\sigma_{0}^{2} & , i<m \\ \sigma_{1}^{2} & , i \geq m\end{cases}
$$

- single variance change or simultaneous mean/variance change.

ADVANCED MASK

TECHNOLOGY CENTER

Upper S^{2} EWMA control charts
Exponentially Weighted Moving Average
Roberts (1959), Wortham/Ringer (1971), Sweet (1986)

ADVANCED MASK

TECHNOLOGY CENTER

Upper S^{2} EWMA control charts

Exponentially Weighted Moving Average
Roberts (1959), Wortham/Ringer (1971), Sweet (1986)

$$
Z_{0}=z_{0}=E_{\sigma_{0}}\left(S_{i}^{2}\right)=\sigma_{0}^{2}
$$

ADVANCED MASK

Upper S^{2} EWMA control charts
Exponentially Weighted Moving Average
Roberts (1959), Wortham/Ringer (1971), Sweet (1986)

$$
\begin{aligned}
& Z_{0}=z_{0}=E_{\sigma_{0}}\left(S_{i}^{2}\right)=\sigma_{0}^{2} \\
& Z_{i}=(1-\lambda) Z_{i-1}+\lambda S_{i}^{2} \quad, \lambda \in(0,1]
\end{aligned}
$$

ADVANCED MASK

Upper S^{2} EWMA control charts
Exponentially Weighted Moving Average Roberts (1959), Wortham/Ringer (1971), Sweet (1986)

$$
\begin{aligned}
& Z_{0}=z_{0}=E_{\sigma_{0}}\left(S_{i}^{2}\right)=\sigma_{0}^{2} \\
& Z_{i}=(1-\lambda) Z_{i-1}+\lambda S_{i}^{2} \quad, \lambda \in(0,1]
\end{aligned}
$$

$$
E_{\sigma_{0}}\left(Z_{i}\right)=\sigma_{0}^{2}
$$

$$
\operatorname{Var}_{\sigma_{0}}\left(Z_{i}\right)=\frac{\lambda}{2-\lambda}\left(1-(1-\lambda)^{2 i}\right) \times \operatorname{Var}_{\sigma_{0}}\left(S_{i}^{2}\right)
$$

$$
\rightarrow \frac{\lambda}{2-\lambda} \times \frac{2}{n-1} \sigma_{0}^{4}=: \sigma_{Z}^{2}
$$

ADVANCED MASK

Upper S^{2} EWMA control charts
Exponentially Weighted Moving Average Roberts (1959), Wortham/Ringer (1971), Sweet (1986)

$$
\begin{aligned}
& Z_{0}=z_{0}=E_{\sigma_{0}}\left(S_{i}^{2}\right)=\sigma_{0}^{2}, \\
& Z_{i}=(1-\lambda) Z_{i-1}+\lambda S_{i}^{2} \quad, \lambda \in(0,1],
\end{aligned}
$$

$$
E_{\sigma_{0}}\left(Z_{i}\right)=\sigma_{0}^{2}
$$

$$
\operatorname{Var}_{\sigma_{0}}\left(Z_{i}\right)=\frac{\lambda}{2-\lambda}\left(1-(1-\lambda)^{2 i}\right) \times \operatorname{Var}_{\sigma_{0}}\left(S_{i}^{2}\right)
$$

$$
\rightarrow \frac{\lambda}{2-\lambda} \times \frac{2}{n-1} \sigma_{0}^{4}=: \sigma_{Z}^{2},
$$

$$
L=\inf \left\{i \in \mathbb{N}: Z_{i}>\sigma_{0}^{2}+c \sigma_{Z}\right\} .
$$

ADVANCED MASK

TECHNOLOGY CENTER

Modifications

$$
Z_{i}^{*}=\max \left\{(1-\lambda) Z_{i-1}^{*}+\lambda S_{i}^{2}, \sigma_{0}^{2}\right\},
$$

ADVANCED MASK

TECHNOLOGY CENTER

Modifications

$$
\begin{aligned}
Z_{i}^{*} & =\max \left\{(1-\lambda) Z_{i-1}^{*}+\lambda S_{i}^{2}, \sigma_{0}^{2}\right\}, \\
L_{\text {two-sided }} & =\inf \left\{i \in \mathbb{N}: Z_{i}-\sigma_{0}^{2} \notin\left[c_{\text {ower }}, c_{\text {upper }}\right] \times \sigma_{Z}\right\},
\end{aligned}
$$

ADVANCED MASK

Modifications

$$
\begin{aligned}
Z_{i}^{*} & =\max \left\{(1-\lambda) Z_{i-1}^{*}+\lambda S_{i}^{2}, \sigma_{0}^{2}\right\} \\
L_{\text {two-sided }} & =\inf \left\{i \in \mathbb{N}: Z_{i}-\sigma_{0}^{2} \notin\left[c_{\text {lower }}, c_{\text {upper }}\right] \times \sigma_{Z}\right\},
\end{aligned}
$$

use S_{i} or $\ln S_{i}^{2}$ or R_{i} or \ldots

ADVANCED MASK

TECHNOLOGY CENTER

Performance measures for control charting

Denote $E_{m}(\cdot)$ the expectation for a change point at m.

1. Average Run Length (ARL): $E_{\infty}(L) \& E_{1}(L) \rightsquigarrow E_{\sigma}(L)$

ADVANCED MASK

TECHNOLOGY CENTER

Performance measures for control charting

Denote $E_{m}(\cdot)$ the expectation for a change point at m.

1. Average Run Length (ARL): $E_{\infty}(L) \& E_{1}(L) \rightsquigarrow E_{\sigma}(L)$
2. Lorden's worst case: $E_{\infty}(L) \& \sup _{m} \operatorname{ess} \sup E_{m}\left((L-m+1)^{+} \mid \mathcal{F}_{m-1}\right)$

ADVANCED MASK

TECHNOLOGY CENTER

Performance measures for control charting

Denote $E_{m}(\cdot)$ the expectation for a change point at m.

1. Average Run Length (ARL): $E_{\infty}(L) \& E_{1}(L) \rightsquigarrow E_{\sigma}(L)$
2. Lorden's worst case: $E_{\infty}(L) \& \sup _{m} \operatorname{ess} \sup E_{m}\left((L-m+1)^{+} \mid \mathcal{F}_{m-1}\right)$
3. Roberts' steady state: $E_{\infty}(L) \& \lim _{m \rightarrow \infty} E_{m}(L-m+1 \mid L \geq m-1)$
4. ...

ADVANCED MASK

TECHNOLOGY CENTER

ARL computation

1. Markov chain approximation (Brook/Evans, 1972, CUSUM) Lucas/Saccucci (1990),

ADVANCED MASK

TECHNOLOGY CENTER

ARL computation

1. Markov chain approximation (Brook/Evans, 1972, CUSUM) Lucas/Saccucci (1990),
2. Nyström method (Vance, 1986, CUSUM)

Crowder (1987),

ADVANCED MASK

TECHNOLOGY CENTER

ARL computation

1. Markov chain approximation (Brook/Evans, 1972, CUSUM) Lucas/Saccucci (1990),
2. Nyström method (Vance, 1986, CUSUM) Crowder (1987),
3. Champ/Rigdon (1991): comparison of the previous ones,

ADVANCED MASK

TECHNOLOGY CENTER

ARL computation

1. Markov chain approximation (Brook/Evans, 1972, CUSUM) Lucas/Saccucci (1990),
2. Nyström method (Vance, 1986, CUSUM) Crowder (1987),
3. Champ/Rigdon (1991): comparison of the previous ones,
4. Monte Carlo,
5. ...,

ADVANCED MASK

TECHNOLOGY CENTER

ARL computation

1. Markov chain approximation (Brook/Evans, 1972, CUSUM) Lucas/Saccucci (1990),
2. Nyström method (Vance, 1986, CUSUM) Crowder (1987),
3. Champ/Rigdon (1991): comparison of the previous ones,
4. Monte Carlo,
5. ...,
6. Collocation (Fellner, 1990, CUSUM) Gianino/Champ/Rigdon (1990).

ADVANCED MASK

Application to upper S^{2} EWMA ARLs I
$n=5, \lambda=0.18, c=2.90922\left(\right.$ final $E_{\infty}(L)$ value is 250)

ADVANCED MASK

Application to upper S^{2} EWMA ARLs II
$n=3, \lambda=0.18, c=3.61384$ (final $E_{\infty}(L)$ value is 502.34)

ADVANCED MASK

TECHNOLOGY CENTER

Application to upper S^{2} EWMA ARLs III

$$
n=2, \lambda=0.025, c=1.66186\left(\text { final } E_{\infty}(L) \text { value is } 250\right)
$$

ADVANCED MASK

TECHNOLOGY CENTER

Numerics

- $f\left(z_{i-1} \rightarrow z_{i}\right)=0$ for $z_{i}<(1-\lambda) z_{i-1} \rightsquigarrow$ Nyström fails,

ADVANCED MASK

TECHNOLOGY CENTER

Numerics

- $f\left(z_{i-1} \rightarrow z_{i}\right)=0$ for $z_{i}<(1-\lambda) z_{i-1} \rightsquigarrow$ Nyström fails,
- product Nyström,

ADVANCED MASK

TECHNOLOGY CENTER

Numerics

- $f\left(z_{i-1} \rightarrow z_{i}\right)=0$ for $z_{i}<(1-\lambda) z_{i-1} \rightsquigarrow$ Nyström fails,
- product Nyström,
- collocation: $\operatorname{ARL}(z)=\sum_{i=1}^{N} c_{i} T_{i}(z)$,
$T_{i}(z)$ - monomials, Lagrange or Chebyshev polynomials

ADVANCED MASK

Application to upper S^{2} EWMA ARLs I
$n=5, \lambda=0.18, c=2.90922\left(\right.$ final $E_{\infty}(L)$ value is 250)

ADVANCED MASK

Application to upper S^{2} EWMA ARLs II
$n=3, \lambda=0.18, c=3.61384$ (final $E_{\infty}(L)$ value is 502.34)

ADVANCED MASK

Application to upper S^{2} EWMA ARLs III

$$
n=2, \lambda=0.025, c=1.66186\left(\text { final } E_{\infty}(L) \text { value is } 250\right)
$$

ADVANCED MASK

TECHNOLOGY CENTER

How fast is the collocation approach?

$$
n=2, \lambda=0.025, c=1.66186\left(\text { final } E_{\infty}(L) \text { value is } 250\right)
$$

Method	matrix dimension N					
	25	51	101	201	301	
Markov chain	103.7077	307.4809	254.6729	250.3782	249.3206	
	$<1^{1}$	1	3	13	39	
factor Nyström	<0	376.0594	256.6795	250.4456	250.0908	
	<1	1	2	9	27	
Collocation	249.999	249.9997	249.9997	249.9997	249.9997	
	1	3	11	40	101	

[^0]
ADVANCED MASK

TECHNOLOGY CENTER

Modifications etc.

- two-sided or one-sided with reflection barrier: piecewise collocation,

ADVANCED MASK

TECHNOLOGY CENTER

Modifications etc.

- two-sided or one-sided with reflection barrier: piecewise collocation,
- similar ideas could be employed for $\bar{X}-S^{2}$ EWMA charts enhance Gan (1995),

ADVANCED MASK

TECHNOLOGY CENTER

Modifications etc.

- two-sided or one-sided with reflection barrier: piecewise collocation,
- similar ideas could be employed for $\bar{X}-S^{2}$ EWMA charts enhance Gan (1995),
- for $\ln S^{2}$ EWMA charts the Gauss-Legendre Nyström method is the most powerful - Crowder/Hamilton (1992).

ADVANCED MASK

TECHNOLOGY CENTER

Comparison S^{2} and $\ln S^{2}$ EWMA charts

Setup: derived from Crowder/Hamilton (1992)

ADVANCED MASK

TECHNOLOGY CENTER

Comparison S^{2} and $\ln S^{2}$ EWMA charts

Setup: derived from Crowder/Hamilton (1992)

1. $\ln S^{2}$ EWMA: $z_{\text {reflect }}=\ln \sigma_{0}^{2}$ or $E_{\sigma_{0}}\left(\ln S_{i}^{2}\right)$

$$
Z_{0}=z_{\text {reflect }}, Z_{i}=\max \left\{(1-\lambda) Z_{i-1}+\lambda \ln S_{i}^{2}, z_{\text {reflect }}\right\}
$$

ADVANCED MASK

Comparison S^{2} and $\ln S^{2}$ EWMA charts

Setup: derived from Crowder/Hamilton (1992)

1. $\ln S^{2}$ EWMA: $z_{\text {reflect }}=\ln \sigma_{0}^{2}$ or $E_{\sigma_{0}}\left(\ln S_{i}^{2}\right)$

$$
Z_{0}=z_{\text {reflect }}, Z_{i}=\max \left\{(1-\lambda) Z_{i-1}+\lambda \ln S_{i}^{2}, z_{\text {reflect }}\right\}
$$

2. $S^{2} \mathrm{EWMA}: z_{\text {reflect }}=\sigma_{0}^{2}=E_{\sigma_{0}}\left(S_{i}^{2}\right)$

$$
Z_{0}=z_{\text {reflect }}, Z_{i}=\max \left\{(1-\lambda) Z_{i-1}+\lambda S_{i}^{2}, z_{\text {reflect }}\right\}
$$

ADVANCED MASK

TECHNOLOGY CENTER

Comparison S^{2} and $\ln S^{2}$ EWMA charts

Setup: derived from Crowder/Hamilton (1992)

1. $\ln S^{2}$ EWMA: $z_{\text {reflect }}=\ln \sigma_{0}^{2}$ or $E_{\sigma_{0}}\left(\ln S_{i}^{2}\right)$

$$
Z_{0}=z_{\text {reflect }}, Z_{i}=\max \left\{(1-\lambda) Z_{i-1}+\lambda \ln S_{i}^{2}, z_{\text {reflect }}\right\}
$$

2. S^{2} EWMA: $z_{\text {reflect }}=\sigma_{0}^{2}=E_{\sigma_{0}}\left(S_{i}^{2}\right)$

$$
Z_{0}=z_{\text {reflect }}, Z_{i}=\max \left\{(1-\lambda) Z_{i-1}+\lambda S_{i}^{2}, z_{\text {reflect }}\right\}
$$

3. both: $\lambda \in\{0.05,0.16,0.32\}, E_{\infty}(L)=200, \sigma_{0}^{2}=1$.

ADVANCED MASK

Comparison S^{2} and $\ln S^{2}$ EWMA charts

Results: ARL

σ^{2}	$\lambda=0.05$			$\lambda=0.16$			$\lambda=0.32$		
	0	-. 267		0	-. 267		0	-. 267	
1	200.00	200.00	200.00	200.00	200.00	200.00	200.00	200.00	200.00
$1.1{ }^{2}$	43.04	41.55	37.78	45.59	43.19	43.44	48.93	46.90	50.50
$1.2{ }^{2}$	18.10	19.92	16.71	18.54	18.46	17.42	19.63	19.12	20.05
$1.3{ }^{2}$	10.75	13.11	10.32	10.52	11.11	9.85	10.73	10.79	10.74
$1.4{ }^{2}$	63	9.93	7.39	7.20	7.96	6.68	7.08	7.34	6.93
$1.5{ }^{2}$	5.97	8.11	5.74	5.49	6.27	5.03	5.24	5.57	5.03
2^{2}	3.17	4.67	2.74	2.77	3.37	2.33	2.44	2.78	2.18

ADVANCED MASK

TECHNOLOGY CENTER

Calculating limits: quick and dirty vs. costly and correct

$$
n=5, E_{\infty}(L)=370, \text { threshold }=\sigma_{0}^{2}+\sigma_{0}^{2} \sqrt{\frac{\lambda}{2-\lambda}} \times \begin{cases}c_{\text {coll }} \sqrt{\frac{2}{n-1}} & , \text { correct } \\ \frac{\chi_{n-1 ; 1-1 / 370}^{2}}{n-1}-1 & , \text { quick and dirty }\end{cases}
$$

ADVANCED MASK

Running for the "optimal" λ

$$
n=5, E_{\infty}(L)=250, \sigma_{1}=1.5, \text { Mittag et al. (1998) }
$$

ADVANCED MASK

Very small λ

$$
n=5, E_{\infty}(L)=250, \sigma_{1}=1.5, \text { Mittag et al. (1998) }
$$

ADVANCED MASK

Very small λ

" winning scheme"

$$
\begin{aligned}
\lambda & =0.000042 \\
c & =0.000064375308
\end{aligned}
$$

ADVANCED MASK

Very small λ

" winning scheme"

$$
\begin{aligned}
\lambda & =0.000042 \\
c & =0.000064375308 \\
\widehat{E_{\infty}(L)} & =250.103 \pm 0.091 \\
\widehat{E_{1}(L)} & =1.3628 \pm 0.0000 \\
& 10^{9} \text { rep. }
\end{aligned}
$$

ADVANCED MASK

Very small λ

" winning scheme"

$$
\begin{aligned}
& \lambda=0.000042 \\
& c=0.000064375308 \\
& \widehat{E_{\infty}(L)}=250.103 \pm 0.091, \\
& \widehat{E_{1}(L)}=1.3628 \pm 0.0000, \\
& 10^{9} \text { rep. } \\
& P_{\infty}(L=1) \approx 0.4
\end{aligned}
$$

ADVANCED MASK

TECHNOLOGY CENTER

Conclusions

- EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.
- Collocation allows to cure these accuracy problems.
- The algorithm will be implemented in $\mathbb{R}^{\text {R }}$ library spc.
- The quick and dirty approach of deriving S^{2} EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S^{2} EWMA control charts for very small λ.
- S^{2} EWMA seems to be better than EWMA $\ln S^{2}$ (supported by earlier, more extensive comparison studies).

ADVANCED MASK

TECHNOLOGY CENTER

Conclusions

- EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.
- Collocation allows to cure these accuracy problems.
- The algorithm will be implemented in \mathbb{R} library spc.
- The quick and dirty approach of deriving S^{2} EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S^{2} EWMA control charts for very small λ.
- S^{2} EWMA seems to be better than EWMA $\ln S^{2}$ (supported by earlier, more extensive comparison studies).

ADVANCED MASK

TECHNOLOGY CENTER

Conclusions

- EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.
- Collocation allows to cure these accuracy problems.
- The algorithm will be implemented in \mathbb{R} library spc.
- The quick and dirty approach of deriving S^{2} EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S^{2} EWMA control charts for very small λ.
- S^{2} EWMA seems to be better than EWMA $\ln S^{2}$ (supported by earlier, more extensive comparison studies).

ADVANCED MASK

TECHNOLOGY CENTER

Conclusions

- EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.
- Collocation allows to cure these accuracy problems.
- The algorithm will be implemented in \mathbb{R} library spc.
- The quick and dirty approach of deriving S^{2} EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S^{2} EWMA control charts for very small λ.
- S^{2} EWMA seems to be better than EWMA $\ln S^{2}$ (supported by earlier, more extensive comparison studies).

ADVANCED MASK

TECHNOLOGY CENTER

Conclusions

- EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.
- Collocation allows to cure these accuracy problems.
- The algorithm will be implemented in \mathbb{P} library spc.
- The quick and dirty approach of deriving S^{2} EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S^{2} EWMA control charts for very small λ.
- S^{2} EWMA seems to be better than EWMA $\ln S^{2}$ (supported by earlier, more extensive comparison studies).

ADVANCED MASK

TECHNOLOGY CENTER

Conclusions

- EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.
- Collocation allows to cure these accuracy problems.
- The algorithm will be implemented in \mathbb{P} library spc.
- The quick and dirty approach of deriving S^{2} EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S^{2} EWMA control charts for very small λ.
- S^{2} EWMA seems to be better than EWMA $\ln S^{2}$ (supported by earlier, more extensive comparison studies).

ADVANCED MASK

TECHNOLOGY CENTER

Conclusions

- EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.
- Collocation allows to cure these accuracy problems.
- The algorithm will be implemented in \mathbb{R} library spc.
- The quick and dirty approach of deriving S^{2} EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S^{2} EWMA control charts for very small λ.
- S^{2} EWMA seems to be better than EWMA $\ln S^{2}$ (supported by earlier, more extensive comparison studies).

[^0]: ${ }^{1} \mathrm{CPU}$ time in hundredth seconds on an Athlon XP 1.4 GHz

