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Statistics & Monitoring

Statistical Process Control (SPC) industrial statistics

Change Point Detection Schemes mathematical statistics

Surveillance biostatistics

Structural Breaks econometrics



Objective of ”Control Charting”

Woodall/Montgomery (1999)

... in the area of control charting and SPC. As a general definition,
we include in this area any statistical method designed to detect
changes in a process over time.



Change Point Model (for the mean)

I {Xij} – series of random variables with cdf {Pi},
j = 1, 2, . . . , n, n – subgroup size,

I assumptions: Pi (x) = Φ
(
(x − µ(i))/σ(i)

)
, independence,

I model:

µ(i) =

{
µ0 , i < m

µ1 , i ≥ m
, σ(i) = σ0

with unkown parameter m (change point),

I more formal objective of SPC:

detect m as fast and reliable as possible.
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Variance monitoring

I variance within samples (e. g., uniformity measures),

I sample statistics such as S2,S ,R or certain robust estimators,
e. g.

S2
i =

1

n − 1

n∑
j=1

(
Xij − X̄i

)2
,

I change point model:

σ2
(i) =

{
σ2

0 , i < m

σ2
1 , i ≥ m

,

I single variance change or simultaneous mean/variance change.
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Upper S2 EWMA control charts
Exponentially Weighted Moving Average

Roberts (1959), Wortham/Ringer (1971), Sweet (1986)

Z0 = z0 = Eσ0(S
2
i ) = σ2

0 ,

Zi = (1− λ) Zi−1 + λ S2
i , λ ∈ (0, 1] ,

Eσ0(Zi ) = σ2
0 ,

Varσ0(Zi ) =
λ

2− λ

(
1− (1− λ)2i

)
× Varσ0(S

2
i )

→ λ

2− λ
× 2

n − 1
σ4

0 =: σ2
Z ,

L = inf
{
i ∈ N : Zi > σ2

0 + c σZ

}
.
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Modifications

Z ∗i = max
{
(1− λ) Z ∗i−1 + λ S2

i , σ2
0

}
,

Ltwo-sided = inf
{
i ∈ N : Zi − σ2

0 /∈ [clower, cupper]× σZ

}
,

use Si or lnS2
i or Ri or . . .
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Performance measures for control charting

Denote Em(·) the expectation for a change point at m.

1. Average Run Length (ARL): E∞(L) & E1(L)  Eσ(L)

2. Lorden’s worst case: E∞(L) & sup
m

ess supEm

(
(L−m +1)+|Fm−1

)
3. Roberts’ steady state: E∞(L) & lim

m→∞
Em

(
L−m + 1|L ≥ m − 1

)
4. ...
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ARL computation

1. Markov chain approximation (Brook/Evans, 1972, CUSUM)

Lucas/Saccucci (1990),

2. Nyström method (Vance, 1986, CUSUM)

Crowder (1987),

3. Champ/Rigdon (1991): comparison of the previous ones,

4. Monte Carlo,

5. ...,

6. Collocation (Fellner, 1990, CUSUM)

Gianino/Champ/Rigdon (1990).
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Application to upper S2 EWMA ARLs I

n = 5, λ = 0.18, c = 2.90922 (final E∞(L) value is 250)
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Application to upper S2 EWMA ARLs II

n = 3, λ = 0.18, c = 3.61384 (final E∞(L) value is 502.34)

 501.5

 502

 502.5

 503

 503.5

 0  50  100  150  200  250  300

A
R

L
 a

p
p

ro
x
im

a
ti

o
n

matrix dimension N

Brook/Evans



Application to upper S2 EWMA ARLs III

n = 2, λ = 0.025, c = 1.66186 (final E∞(L) value is 250)
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Numerics

I f (zi−1 → zi ) = 0 for zi < (1− λ)zi−1  Nyström fails,

I product Nyström,

I collocation: ARL(z) =
N∑

i=1

ciTi (z),

Ti (z) – monomials, Lagrange or Chebyshev polynomials
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Application to upper S2 EWMA ARLs I

n = 5, λ = 0.18, c = 2.90922 (final E∞(L) value is 250)
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Application to upper S2 EWMA ARLs II

n = 3, λ = 0.18, c = 3.61384 (final E∞(L) value is 502.34)
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Application to upper S2 EWMA ARLs III

n = 2, λ = 0.025, c = 1.66186 (final E∞(L) value is 250)
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How fast is the collocation approach?

n = 2, λ = 0.025, c = 1.66186 (final E∞(L) value is 250)

Method
matrix dimension N

25 51 101 201 301

Markov chain
103.7077 307.4809 254.6729 250.3782 249.3206

< 11 1 3 13 39

factor Nyström
< 0 376.0594 256.6795 250.4456 250.0908
< 1 1 2 9 27

Collocation
249.9999 249.9997 249.9997 249.9997 249.9997

1 3 11 40 101

1CPU time in hundredth seconds on an Athlon XP 1.4 GHz



Modifications etc.

I two-sided or one-sided with reflection barrier: piecewise
collocation,

I similar ideas could be employed for X̄ -S2 EWMA charts –
enhance Gan (1995),

I for lnS2 EWMA charts the Gauss-Legendre Nyström method
is the most powerful – Crowder/Hamilton (1992).
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Comparison S2 and ln S2 EWMA charts

Setup: derived from Crowder/Hamilton (1992)

1. lnS2 EWMA: zreflect = ln σ2
0 or Eσ0(lnS2

i )

Z0 = zreflect , Zi = max{(1− λ)Zi−1 + λ lnS2
i , zreflect},

2. S2 EWMA: zreflect = σ2
0 = Eσ0(S

2
i )

Z0 = zreflect , Zi = max{(1− λ)Zi−1 + λS2
i , zreflect},

3. both: λ ∈ {0.05, 0.16, 0.32}, E∞(L) = 200, σ2
0 = 1.
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Comparison S2 and ln S2 EWMA charts

Results: ARL

λ = 0.05 λ = 0.16 λ = 0.32
σ2 ln S2 S2 ln S2 S2 ln S2 S2

0 -.267 0 -.267 0 -.267

1 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00
1.12 43.04 41.55 37.78 45.59 43.19 43.44 48.93 46.90 50.50
1.22 18.10 19.92 16.71 18.54 18.46 17.42 19.63 19.12 20.05
1.32 10.75 13.11 10.32 10.52 11.11 9.85 10.73 10.79 10.74
1.42 7.63 9.93 7.39 7.20 7.96 6.68 7.08 7.34 6.93
1.52 5.97 8.11 5.74 5.49 6.27 5.03 5.24 5.57 5.03
22 3.17 4.67 2.74 2.77 3.37 2.33 2.44 2.78 2.18



Calculating limits: quick and dirty vs. costly and correct

n = 5, E∞(L) = 370 , threshold = σ2
0 + σ2
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Running for the ”optimal” λ

n = 5, E∞(L) = 250, σ1 = 1.5, Mittag et al. (1998)
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Very small λ

n = 5, E∞(L) = 250, σ1 = 1.5, Mittag et al. (1998)
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Very small λ

”winning scheme”

λ = 0.000 042 ,

c = 0.000 064 375 308 ,

Ê∞(L) = 250.103± 0.091 ,

Ê1(L) = 1.3628± 0.0000 ,

109 rep. ,

P∞(L = 1) ≈ 0.4 .
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Ê1(L) = 1.3628± 0.0000 ,

109 rep. ,

P∞(L = 1) ≈ 0.4 .



Very small λ

”winning scheme”

λ = 0.000 042 ,

c = 0.000 064 375 308 ,

Ê∞(L) = 250.103± 0.091 ,
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Conclusions

I EWMA control charts for the variance were often applied, but
the accuracy in computing their ARL values was poor.

I Collocation allows to cure these accuracy problems.

I The algorithm will be implemented in library spc.

I The quick and dirty approach of deriving S2 EWMA control
limits provides suitable results.

I Now, we are able to compute the ARL of S2 EWMA control
charts for very small λ.

I S2 EWMA seems to be better than EWMA lnS2 (supported
by earlier, more extensive comparison studies).
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