

EWMA control charts for monitoring normal variance

Sven Knoth

Fifth Annual Meeting of ENBIS

Newcastle, September 2005

Outline

- 1. Variance monitoring,
- 2. EWMA,
- 3. Numerical challenges,
- 4. Application,
- 5. Conclusions.

Statistics & Monitoring

Statistical Process Control (SPC)	industrial statistics
Change Point Detection Schemes	mathematical statistics
Surveillance	biostatistics
Structural Breaks	econometrics

Objective of "Control Charting"

WOODALL/MONTGOMERY (1999)

... in the area of control charting and SPC. As a general definition, we include in this area any statistical method designed to detect changes in a process over time.

TECHNOLOGY CENTER

Change Point Model (for the mean)

TECHNOLOGY CENTER

Change Point Model (for the mean)

- {X_{ij}} − series of random variables with cdf {P_i}, j = 1, 2, ..., n, n − subgroup size,
- ► assumptions: $P_i(x) = \Phi((x \mu_{(i)}) / \sigma_{(i)})$, independence,

Change Point Model (for the mean)

- {X_{ij}} − series of random variables with cdf {P_i}, j = 1, 2, ..., n, n − subgroup size,
- assumptions: P_i(x) = Φ((x μ_(i))/σ_(i)), independence,
 model:

TECHNOLOGY CENTER

$$\mu_{(i)} = \begin{cases} \mu_0 & , \ i < m \\ \mu_1 & , \ i \ge m \end{cases}, \ \sigma_{(i)} = \sigma_0$$

with unkown parameter m (change point),

Change Point Model (for the mean)

- {X_{ij}} − series of random variables with cdf {P_i}, j = 1, 2, ..., n, n − subgroup size,
- assumptions: P_i(x) = Φ((x μ_(i))/σ_(i)), independence,
 model:

TECHNOLOGY CENTER

$$\mu_{(i)} = \begin{cases} \mu_0 & , \ i < m \\ \mu_1 & , \ i \ge m \end{cases}, \ \sigma_{(i)} = \sigma_0$$

with unkown parameter m (change point),

more formal objective of SPC:

detect m as fast and reliable as possible.

Variance monitoring

variance within samples (e.g., uniformity measures),

Variance monitoring

- variance within samples (e.g., uniformity measures),
- ► sample statistics such as S², S, R or certain robust estimators, e.g.

$$S_i^2 = rac{1}{n-1} \sum_{j=1}^n (X_{ij} - \bar{X}_i)^2,$$

Variance monitoring

- variance within samples (e.g., uniformity measures),
- ► sample statistics such as S², S, R or certain robust estimators, e.g.

TECHNOLOGY CENTER

$$S_i^2 = rac{1}{n-1} \sum_{j=1}^n (X_{ij} - \bar{X}_i)^2,$$

change point model:

$$\sigma_{(i)}^2 = \begin{cases} \sigma_0^2 & , i < m \\ \sigma_1^2 & , i \ge m \end{cases},$$

Variance monitoring

- variance within samples (e.g., uniformity measures),
- ► sample statistics such as S², S, R or certain robust estimators, e.g.

TECHNOLOGY CENTER

$$S_i^2 = rac{1}{n-1} \sum_{j=1}^n (X_{ij} - \bar{X}_i)^2,$$

change point model:

$$\sigma_{(i)}^2 = \begin{cases} \sigma_0^2 & , i < m \\ \sigma_1^2 & , i \ge m \end{cases}$$

single variance change or simultaneous mean/variance change.

Upper S^2 EWMA control charts

Exponentially Weighted Moving Average Roberts (1959), Wortham/Ringer (1971), Sweet (1986)

Upper S^2 EWMA control charts

Exponentially Weighted Moving Average Roberts (1959), Wortham/Ringer (1971), Sweet (1986)

$$Z_0 = z_0 = E_{\sigma_0}(S_i^2) = \sigma_0^2 \,,$$

Upper S^2 EWMA control charts

Exponentially Weighted Moving Average Roberts (1959), Wortham/Ringer (1971), Sweet (1986)

$$egin{aligned} & Z_0 = z_0 = E_{\sigma_0}(S_i^2) = \sigma_0^2\,, \ & Z_i = (1-\lambda)\,Z_{i-1} + \lambda\,S_i^2 \,\,\,\,\,\,\,,\,\,\lambda \in (0,1]\,, \end{aligned}$$

Upper S^2 EWMA control charts

Exponentially Weighted Moving Average Roberts (1959), Wortham/Ringer (1971), Sweet (1986)

$$\begin{split} Z_0 &= z_0 = E_{\sigma_0}(S_i^2) = \sigma_0^2 \,, \\ Z_i &= (1 - \lambda) \, Z_{i-1} + \lambda \, S_i^2 \qquad , \ \lambda \in (0, 1] \,, \\ E_{\sigma_0}(Z_i) &= \sigma_0^2 \,, \\ \text{Var}_{\sigma_0}(Z_i) &= \frac{\lambda}{2 - \lambda} \big(1 - (1 - \lambda)^{2i} \big) \times \text{Var}_{\sigma_0}(S_i^2) \\ &\rightarrow \frac{\lambda}{2 - \lambda} \times \frac{2}{n-1} \, \sigma_0^4 =: \sigma_Z^2 \,, \end{split}$$

Upper S^2 EWMA control charts

Exponentially Weighted Moving Average Roberts (1959), Wortham/Ringer (1971), Sweet (1986)

$$Z_0 = z_0 = E_{\sigma_0}(S_i^2) = \sigma_0^2,$$

$$Z_i = (1 - \lambda) Z_{i-1} + \lambda S_i^2 , \lambda \in (0, 1],$$

$$E_{\sigma_0}(Z_i) = \sigma_0^2,$$

$$Var_{\sigma_0}(Z_i) = \frac{\lambda}{2 - \lambda} (1 - (1 - \lambda)^{2i}) \times Var_{\sigma_0}(S_i^2)$$

$$\rightarrow \frac{\lambda}{2 - \lambda} \times \frac{2}{n - 1} \sigma_0^4 =: \sigma_Z^2,$$

$$L = \inf \left\{ i \in \mathbb{N} : Z_i > \sigma_0^2 + c \sigma_Z \right\}.$$

Modifications

$$Z_i^* = \max\left\{ \left(1 - \lambda\right) Z_{i-1}^* + \lambda S_i^2, \sigma_0^2 \right\},\,$$

Modifications

$$\begin{split} & Z_i^* = \max\left\{ \left(1 - \lambda\right) Z_{i-1}^* + \lambda \, S_i^2, \sigma_0^2 \right\}, \\ & \mathcal{L}_{\mathsf{two-sided}} = \inf\left\{ i \in \mathbb{N} : Z_i - \sigma_0^2 \notin \left[c_{\mathsf{lower}}, c_{\mathsf{upper}} \right] \times \sigma_Z \right\}, \end{split}$$

Modifications

$$Z_i^* = \max \left\{ (1 - \lambda) Z_{i-1}^* + \lambda S_i^2, \sigma_0^2 \right\},$$

$$L_{\text{two-sided}} = \inf \left\{ i \in \mathbb{N} : Z_i - \sigma_0^2 \notin [c_{\text{lower}}, c_{\text{upper}}] \times \sigma_Z \right\},$$

use S_i or $\ln S_i^2$ or R_i or ...

Performance measures for control charting

Denote $E_m(\cdot)$ the expectation for a change point at m.

1. Average Run Length (ARL): $E_{\infty}(L) \& E_1(L) \rightsquigarrow E_{\sigma}(L)$

Performance measures for control charting

Denote $E_m(\cdot)$ the expectation for a change point at m.

- 1. Average Run Length (ARL): $E_{\infty}(L) \& E_1(L) \rightsquigarrow E_{\sigma}(L)$
- 2. Lorden's worst case: $E_{\infty}(L)$ & sup ess sup $E_m((L-m+1)^+|\mathcal{F}_{m-1})$

Performance measures for control charting

Denote $E_m(\cdot)$ the expectation for a change point at m.

- 1. Average Run Length (ARL): $E_{\infty}(L) \& E_1(L) \rightsquigarrow E_{\sigma}(L)$
- 2. Lorden's worst case: $E_{\infty}(L)$ & sup ess sup $E_m((L-m+1)^+|\mathcal{F}_{m-1})$ 3. Roberts' steady state: $E_{\infty}(L)$ & $\lim_{m\to\infty} E_m(L-m+1|L \ge m-1)$ 4. ...

ARL computation

1. Markov chain approximation (Brook/Evans, 1972, CUSUM) Lucas/Saccucci (1990),

ARL computation

- 1. Markov chain approximation (Brook/Evans, 1972, CUSUM) Lucas/Saccucci (1990),
- 2. Nyström method (Vance, 1986, CUSUM) Crowder (1987),

ARL computation

1. Markov chain approximation (Brook/Evans, 1972, CUSUM) Lucas/Saccucci (1990),

- 2. Nyström method (Vance, 1986, CUSUM) Crowder (1987),
- 3. Champ/Rigdon (1991): comparison of the previous ones,

ARL computation

1. Markov chain approximation (Brook/Evans, 1972, CUSUM) Lucas/Saccucci (1990),

- 2. Nyström method (Vance, 1986, CUSUM) Crowder (1987),
- 3. Champ/Rigdon (1991): comparison of the previous ones,
- 4. Monte Carlo,
- 5. ...,

ARL computation

1. Markov chain approximation (Brook/Evans, 1972, CUSUM) Lucas/Saccucci (1990),

- 2. Nyström method (Vance, 1986, CUSUM) Crowder (1987),
- 3. Champ/Rigdon (1991): comparison of the previous ones,
- 4. Monte Carlo,
- 5. ...,
- 6. Collocation (Fellner, 1990, CUSUM) Gianino/Champ/Rigdon (1990).

Application to upper S^2 EWMA ARLs I

 $n = 5, \lambda = 0.18, c = 2.90922$ (final $E_{\infty}(L)$ value is 250)

Application to upper S^2 EWMA ARLs II

 $n = 3, \lambda = 0.18, c = 3.61384$ (final $E_{\infty}(L)$ value is 502.34)

Application to upper S^2 EWMA ARLs III

 $n = 2, \lambda = 0.025, c = 1.66186$ (final $E_{\infty}(L)$ value is 250)

Numerics

•
$$f(z_{i-1} \rightarrow z_i) = 0$$
 for $z_i < (1 - \lambda)z_{i-1} \rightsquigarrow$ Nyström fails,

Numerics

•
$$f(z_{i-1} \rightarrow z_i) = 0$$
 for $z_i < (1 - \lambda)z_{i-1} \rightsquigarrow$ Nyström fails,

product Nyström,

Numerics

•
$$f(z_{i-1} \rightarrow z_i) = 0$$
 for $z_i < (1 - \lambda)z_{i-1} \rightsquigarrow$ Nyström fails,

product Nyström,

• collocation:
$$ARL(z) = \sum_{i=1}^{N} c_i T_i(z)$$
,

 $T_i(z)$ – monomials, Lagrange or Chebyshev polynomials

Application to upper S^2 EWMA ARLs I

 $n = 5, \lambda = 0.18, c = 2.90922$ (final $E_{\infty}(L)$ value is 250)

Application to upper S^2 EWMA ARLs II

 $n = 3, \lambda = 0.18, c = 3.61384$ (final $E_{\infty}(L)$ value is 502.34)

Application to upper S^2 EWMA ARLs III

 $n = 2, \lambda = 0.025, c = 1.66186$ (final $E_{\infty}(L)$ value is 250)

How fast is the collocation approach?

$$n = 2, \ \lambda = 0.025, \ c = 1.66186$$
 (final $E_{\infty}(L)$ value is 250)

Method	matrix dimension N								
Method	25	51	101	201	301				
Markov chain	103.7077	307.4809	254.6729	250.3782	249.3206				
	$< 1^1$	1	3	13	39				
factor Nyström	< 0	376.0594	256.6795	250.4456	250.0908				
	< 1	1	2	9	27				
Collocation	249.9999	249.9997	249.9997	249.9997	249.9997				
Conocation	1	3	11	40	101				

 $^{^{1}\}mathrm{CPU}$ time in hundredth seconds on an Athlon XP 1.4 GHz

Modifications etc.

 two-sided or one-sided with reflection barrier: piecewise collocation,

Modifications etc.

- two-sided or one-sided with reflection barrier: piecewise collocation,
- ▶ similar ideas could be employed for X̄-S² EWMA charts enhance Gan (1995),

Modifications etc.

- two-sided or one-sided with reflection barrier: piecewise collocation,
- ▶ similar ideas could be employed for X̄-S² EWMA charts enhance Gan (1995),
- ▶ for In S² EWMA charts the Gauss-Legendre Nyström method is the most powerful – Crowder/Hamilton (1992).

Comparison S^2 and $\ln S^2$ EWMA charts

Setup: derived from Crowder/Hamilton (1992)

Comparison S^2 and $\ln S^2$ EWMA charts

Setup: derived from Crowder/Hamilton (1992)

1. In
$$S^2$$
 EWMA: $z_{\text{reflect}} = \ln \sigma_0^2$ or $E_{\sigma_0}(\ln S_i^2)$

$$Z_0 = z_{\mathsf{reflect}} \;,\; Z_i = \max\{(1-\lambda)Z_{i-1} + \lambda \ln S_i^2, z_{\mathsf{reflect}}\},$$

Comparison S^2 and $\ln S^2$ EWMA charts

Setup: derived from Crowder/Hamilton (1992) 1. $\ln S^2$ EWMA: $z_{reflect} = \ln \sigma_0^2$ or $E_{\sigma_0}(\ln S_i^2)$ $Z_0 = z_{reflect}$, $Z_i = \max\{(1 - \lambda)Z_{i-1} + \lambda \ln S_i^2, z_{reflect}\},$ 2. S^2 EWMA: $z_{reflect} = \sigma_0^2 = E_{\sigma_0}(S_i^2)$ $Z_0 = z_{reflect}$, $Z_i = \max\{(1 - \lambda)Z_{i-1} + \lambda S_i^2, z_{reflect}\},$

Comparison S^2 and $\ln S^2$ EWMA charts

Setup: derived from Crowder/Hamilton (1992) 1. $\ln S^2$ EWMA: $z_{reflect} = \ln \sigma_0^2$ or $E_{\sigma_0}(\ln S_i^2)$ $Z_0 = z_{reflect}$, $Z_i = \max\{(1 - \lambda)Z_{i-1} + \lambda \ln S_i^2, z_{reflect}\},$ 2. S^2 EWMA: $z_{reflect} = \sigma_0^2 = E_{\sigma_0}(S_i^2)$ $Z_0 = z_{reflect}$, $Z_i = \max\{(1 - \lambda)Z_{i-1} + \lambda S_i^2, z_{reflect}\},$ 3. both: $\lambda \in \{0.05, 0.16, 0.32\}, E_{\infty}(L) = 200, \sigma_0^2 = 1.$

Comparison S^2 and $\ln S^2$ EWMA charts

Results: ARL

	$\lambda = 0.05$			$\lambda = 0.16$			$\lambda = 0.32$		
σ^2	In <i>S</i> ²		S^2		$\ln S^2$ S^2		$\ln S^2$		S^2
	0	267		0	267		0	267	
1	200.00	200.00	200.00	200.00	200.00	200.00	200.00	200.00	200.00
1.1^{2}	43.04	41.55	37.78	45.59	43.19	43.44	48.93	46.90	50.50
1.2^{2}	18.10	19.92	16.71	18.54	18.46	17.42	19.63	19.12	20.05
1.3 ²	10.75	13.11	10.32	10.52	11.11	9.85	10.73	10.79	10.74
1.4^{2}	7.63	9.93	7.39	7.20	7.96	6.68	7.08	7.34	6.93
1.5^{2}	5.97	8.11	5.74	5.49	6.27	5.03	5.24	5.57	5.03
2 ²	3.17	4.67	2.74	2.77	3.37	2.33	2.44	2.78	2.18

Calculating limits: quick and dirty vs. costly and correct

$$n = 5, \ E_{\infty}(L) = 370, \ threshold = \sigma_0^2 + \sigma_0^2 \sqrt{\frac{\lambda}{2-\lambda}} \times \begin{cases} c_{\text{coll}} \sqrt{\frac{2}{n-1}} & \text{, correct} \\ \frac{\chi^2_{n-1;1-1/370}}{n-1} & \text{, quick and dirty} \end{cases}$$

Running for the "optimal" λ

 $n=5,~E_{\infty}(L)=250,~\sigma_{1}=1.5,$ Mittag et al. (1998)

Very small λ

 $n = 5, E_{\infty}(L) = 250, \sigma_1 = 1.5$, Mittag et al. (1998) 7 true local min 6 5 (1998) $E_I(L)$ Mittag et al. 3 2 1 1e-05 1e-040.001 0.01 0.1 λ

Very small λ

"winning scheme"

 $\lambda = 0.000\,042\,,$

 $c = 0.000\,064\,375\,308\,,$

Very small λ

"winning scheme"

$$\begin{split} \lambda &= 0.000\,042\,,\\ c &= 0.000\,064\,375\,308\,,\\ \widehat{E_{\infty}(L)} &= 250.103\pm 0.091\,,\\ \widehat{E_1(L)} &= 1.3628\pm 0.0000\,,\\ 10^9 \ {\rm rep.}\,, \end{split}$$

Very small λ

"winning scheme"

 $\lambda = 0.000\ 042$, $c = 0.000\ 064\ 375\ 308$, $\widehat{E_{\infty}(L)} = 250.103 \pm 0.091$, $\widehat{E_1(L)} = 1.3628 \pm 0.0000$, 10^9 rep. , $P_{\infty}(L = 1) \approx 0.4$.

Conclusions

EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.

- ► Collocation allows to cure these accuracy problems.
- ▶ The algorithm will be implemented in ඹ library spc.
- The quick and dirty approach of deriving S² EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S² EWMA control charts for very small λ.
- ► S² EWMA seems to be better than EWMA In S² (supported by earlier, more extensive comparison studies).

Conclusions

 EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.

- Collocation allows to cure these accuracy problems.
- ▶ The algorithm will be implemented in 🗬 library spc.
- The quick and dirty approach of deriving S² EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S² EWMA control charts for very small λ.
- ► S² EWMA seems to be better than EWMA In S² (supported by earlier, more extensive comparison studies).

Conclusions

 EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.

- Collocation allows to cure these accuracy problems.
- ► The algorithm will be implemented in 📿 library spc.
- The quick and dirty approach of deriving S² EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S² EWMA control charts for very small λ.
- ► S² EWMA seems to be better than EWMA In S² (supported by earlier, more extensive comparison studies).

Conclusions

 EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.

- ► Collocation allows to cure these accuracy problems.
- ▶ The algorithm will be implemented in ඟ library spc.
- The quick and dirty approach of deriving S² EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S² EWMA control charts for very small λ.
- ► S² EWMA seems to be better than EWMA ln S² (supported by earlier, more extensive comparison studies).

Conclusions

 EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.

- ► Collocation allows to cure these accuracy problems.
- ▶ The algorithm will be implemented in ඹ library spc.
- The quick and dirty approach of deriving S² EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S² EWMA control charts for very small λ.
- ► S² EWMA seems to be better than EWMA ln S² (supported by earlier, more extensive comparison studies).

Conclusions

 EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.

- ► Collocation allows to cure these accuracy problems.
- ▶ The algorithm will be implemented in ඹ library spc.
- The quick and dirty approach of deriving S² EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S² EWMA control charts for very small λ.
- ► S² EWMA seems to be better than EWMA In S² (supported by earlier, more extensive comparison studies).

Conclusions

EWMA control charts for the variance were often applied, but the accuracy in computing their ARL values was poor.

- Collocation allows to cure these accuracy problems.
- The quick and dirty approach of deriving S² EWMA control limits provides suitable results.
- Now, we are able to compute the ARL of S² EWMA control charts for very small λ.
- ► S² EWMA seems to be better than EWMA In S² (supported by earlier, more extensive comparison studies).