

On control charting normal variance

Sven Knoth

September 2008

ENBIS8 Athens

M Advanced mask T technology center

Outline.

ADVANCED MASK 🗾 TECHNOLOGY CENTER

1 Introduction.

- **2** Modelling.
- **3** ARL calculation for Shiryaev-Roberts.
- **4** Competing statistics and 2-sided EWMA.
- **5** Summary.

Why should we apply SPC* to variance?

- Ensure appropriate control limits for mean chart.
- Detect deteriorated uniformity, repeatability, roughness, ... - increased variance level in general.
- Woodall & Montgomery (1999) demanded it ;-)

Woodall/Montgomery (1999), Research issues and ideas in statistical process control. *Journal of Quality Technology, 31, 376-386*

*Statistical Process Control

Two examples from a Mask Shop.

- **1** CD (critical dimension) uniformity:
 - Measure a certain number (20 ... 200) of, e.g., lines of nominal size 200 *nm* on a single plate,
 - calculate sample mean \bar{CD} and standard deviation S_{CD} ,
 - chart both.

2 Gauge repeatibility – CD-SEM (scanning electron microscope):

• Repeat a few times (e. g., 5) the measurement of one given line,

TECHNOLOGY CENTER

- calculate standard deviation S_R ,
- chart it.

ADVANCED MASK

Modelling.

Modelling.

• Sequence
$$\{X_{ij}\}$$
, $i = 1, 2, ...$ and $j = 1, 2, ..., n \ge 1$
with $X_{ij} \sim \mathcal{N}(\mu, \sigma^2)$, independence.

• The change-point model: For a certain unknown m

$$\sigma^{2} = \begin{cases} \sigma_{0}^{2} = 1 & , i < m \\ \sigma_{1}^{2} > (\neq) \sigma_{0}^{2} & , i \ge m \end{cases}$$

- Consider only changes between and not within samples.
- ... a lot of different statistics and control chart types.

ADVANCED MASK 🗾 TECHNOLOGY CENTER

Statistics.

$$\begin{aligned} R_{i} &= \max_{j} X_{ij} - \min_{j} X_{ij} ,\\ S_{i}^{2} &= \frac{1}{n-1} \sum_{j=1}^{n} \left(X_{ij} - \bar{X}_{i} \right)^{2} ,\\ S_{i} &= \sqrt{S_{i}^{2}} , \end{aligned}$$

$$lS_i^2 = \log S_i^2$$
$$abcS_i^2 = a + b \log(S_i^2 + c)$$

- Crowder/Hamilton (1992),
- Castagliola (2005).

Advanced mask Technology center

... control charts.

- Apply one of the statistics in
- control charts such as Shewhart, EWMA, CUSUM, Shiryaev-Roberts
- and consider performance measures such as zero-state and steady-state Average Run Length (ARL).

- Take $\sigma_1 = 1.5$
- and S^2 with batch size n = 1 (for given μ_0 , here $\mu_0 = 0$) as illustrative example.

Advanced mask technology center

Shewhart Chart.

- Oldest scheme, natural extension of Shewhart's p and \bar{X} chart.
- Flag if X_i^2 is large; more formal $L = \inf\{i \in IN : X_i^2 > c_u\}$.
- $X_i^2 \sim \chi_1^2$ for i < m, otherwise $X_i^2/\sigma_1^2 \sim \chi_1^2$
- Choose c_u so that $E_{\infty}(L) = A$.
- *L* is geometrically distributed with $p = P(X_i^2 > c_u)$.

•
$$E_{\infty}(L) = p^{-1}$$
.
• $c_u = F_{\chi_1^2}^{-1} (1 - A^{-1})$.

Advanced mask 🗾 Technology Center

CUSUM.

- Page (1954).
- Based on the log-likelihood ratio of pre- and post-change distribution.

•
$$C_0 = 0$$
, $C_i = \max\{0, C_i + X_i^2 - k\}$, $k = \frac{2\log \sigma_1}{1 - \sigma_1^{-2}}$,
 $L = \inf\{i \in IN : C_i > c_u\}$.

ADVANCED MASK 📶 TECHNOLOGY CENTER

 Worst-case optimal – Lorden (1971), Moustakides (1986), Ritov (1990).

EWMA.

- Roberts (1959).
- No (log-)likelihood ratio involved.

•
$$Z_0 = 1$$
, $Z_i = (1 - \lambda)Z_{i-1} + \lambda X_i^2$, $\lambda \in (0, 1]$,
 $L = \inf\{i \in IN : Z_i > c_u\}$.

• EWMA (exponentially weighted moving average) is popular in finance, inventory forecasting, APC, ...

Advanced mask
 Technology center

Shiryaev-Roberts (SR).

- Girshick/Rubin (1952), Shiryaev (1963), Roberts (1966)
- (log-)likelihood ratio of pre- and post-change distribution

$$Lik_{i} = \frac{(2\pi\sigma_{1}^{2})^{-1/2} e^{-X_{i}^{2}/(2\sigma_{1}^{2})}}{(2\pi)^{-1/2} e^{-X_{i}^{2}/2}} = \sigma_{1}^{-1} e^{\frac{1-\sigma_{1}^{-2}}{2}X_{i}^{2}}$$

•
$$R_0 = 0$$
, $R_i = (1 + R_{i-1}) Lik_i$,
 $L = \inf\{i \in IN : R_i > c_u\}.$

- $\log(R_i) = r_i = \log(1 + e^{r_{i-1}}) \log(\sigma_1) + \frac{1 \sigma_1^{-2}}{2} X_i^2$. - preferred appearance here.
- (asymptotically) steady-state optimal Pollak (1985).
- rarely discussed for variance Srivastava/Chow (1992), Bock (2007).

Advanced mask 🗾 Technology Center

Performance measures.

Notation: $P_m(\cdot)$ and $E_m(\cdot)$ denote probability measure and expectation for given change point m.

• zero-state ARL: $E_{\infty}(L)$, $E_1(L)$ or $E_{\sigma}(L)$

most popular measure in SPC.

• steady-state ARL: $\mathcal{D} = \lim_{m \to \infty} E_m (L - m + 1 | L \ge m).$

link to Bayesian measures.

• worst case ARL: $\mathcal{W} := \sup_{m \geq 1} \operatorname{ess\,sup} E_m ((L - m + 1)^+ | \mathcal{F}_{m-1})$

ADVANCED MASK TI TECHNOLOGY CENTER

most popular measure among (theoretical) statisticians.

Shewhart chart – ARL profile.

$$E_{\sigma}(L) = 1/\left(1 - F_{\chi^2_{\nu}}(c_u/\sigma^2)\right) \quad \left(c_u = \frac{1}{\nu} F_{\chi^2_{\nu}}^{-1}(1 - A^{-1}), A = 500
ight).$$

... + EWMA & CUSUM (n = 1).

... + EWMA & CUSUM (n = 5).

Shiryaev-Roberts?

Shiryaev-Roberts – Status Quo ARL calculation.

Methods applied so far:

Markov chain approximation and Monte Carlo simulation ...

Solution: Appropriate piecewise collocation.

Result.

SR ARL profile.

All together: n = 1.

All together: n = 5.

Now the steady-state ARL.

$$\mathcal{D} = \lim_{m \to \infty} \mathcal{E}_m \left(L - m + 1 | L \ge m \right) = \lim_{m \to \infty} \int_{-A}^{L_u} f_m(y) \mathcal{L}(y) \, dy$$
$$= \int_{-A}^{L_u} \psi(y) \mathcal{L}(y) \, dy$$

with ψ () as left eigenfunction of the integral kernel (belonging to the largest in magnitude eigenvalue ρ):

$$\psi(\mathbf{y}) = \varrho \int_{-A}^{c_u} \psi(\mathbf{x}) f_{\chi_1^2}\left(\frac{\mathbf{y} + A - \log(1 + e^{\mathbf{x}})}{B \sigma^2}\right) \frac{1}{B \sigma^2} d\mathbf{x} \,.$$

Advanced mask Technology center

Density sequence $f_m(y)$ (n = 1).

Bringing $\psi()$ and $\mathcal{L}()$ together.

Zero-state vs. steady-state ARL.

Что делать?

TECHNOLOGY CENTER

• All 3 exhibit the same steady-state performance (ARL).

ADVANCED MASK

- CUSUM is the best one in the worst case (, however, CUSUM is mostly in worst condition).
- Order by publicity/degree of esteem ...
 - Shewhart,
 - Shewhart with runs rules,
 - 3 EWMA,
 - 4 CUSUM,
 - Shiryaev-Roberts.

EWMA?

EWMA.

- On-line estimation of the monitored parameter,
- popular smoother in control schemes,
- more descriptive than CUSUM and SR,
- better than Shewhart (and Shewhart with runs rules),
- two-sided application is simple,
- also the setup as joint mean and variance monitoring scheme,
- single member of {CUSUM, EWMA, SR} that is contained in commercial SPC software packages.

(Jump)

Competing statistics and 2-sided EWMA. $R, S^2, S, IS^2, abcS^2 - batch size n = 5$

Comparison study.

TECHNOLOGY CENTER

- **1** $E_{\infty}(L) = 500$ and n = 5.
- "ARL unbiased" designs (see Acosta-Mejía, Pignatiello Jr. & Rao (1999)).
- 3 All schemes start from their in-control mean.
- **4** Look for "optimal" λ , that is, minimize

$$\mathcal{L}_{0.75} + \mathcal{L}_{1.25}$$
 or $\mathcal{L}_{0.5} + \mathcal{L}_{1.5}$
over $\lambda \in \{0.02, 0.03, \dots, 0.99, 1.00\}.$

5 Resulting λ are:

			statisti	CS	
case	R	S ² S IS ² abcS	abcS ²		
$\mathcal{L}_{0.75} + \mathcal{L}_{1.25}$	0.08	0.08	0.08	0.07	0.08
$\mathcal{L}_{0.5} + \mathcal{L}_{1.5}$	0.23	0.25	0.24	0.20	0.27

ADVANCED MASK

Minimize $\mathcal{L}_{0.75} + \mathcal{L}_{1.25}$.

$\text{Minimize } \mathcal{L}_{0.75} + \mathcal{L}_{1.25} \text{ II.}$

Minimize $\mathcal{L}_{0.75} + \mathcal{L}_{1.25}$ III.

đ	statistics						
0	IS^2	abcS ²	S^2	S	R		
0.4	4.374	5.251	6.575	5.143	5.249		
0.5	5.939	6.389	7.619	6.374	6.514		
0.6	8.547	8.409	9.438	8.459	8.660		
0.7	13.74	12.59	13.17	12.63	12.96		
0.75	18.78	16.56	16.81	16.67	17.14		
0.8	27.94	23.92	23.44	24.04	24.78		
0.9	96.70	82.24	76.74	82.26	84.96		
1.0	500.000						
1.1	90.80	83.53	81.16	82.43	86.43		
1.2	30.74	27.27	25.61	26.61	27.88		
1.25	22.44	19.61	18.06	19.04	19.89		
1.3	17.67	15.26	13.77	14.73	15.35		
1.4	12.54	10.60	9.206	10.12	10.51		
1.5	9.866	8.190	6.864	7.740	8.017		
1.6	8.235	6.735	5.460	6.295	6.509		

(n = 5)

ADVANCED MASK TI TECHNOLOGY CENTER

Summary.

Summary.

- Surveillance of the variance gained popularity.
- There are many competing control charts and statistics.
- Numerical difficulties during calculating of performance measures could be treated; methods could be applied to other designs too (distances, survival times, AR(1) CUSUM, ...)
- "Modern" schemes exhibit similar performance (ARL), all are better than established ones (Shewhart), EWMA resembles suitable compromise for practice.
- There is no need to replace the classics S^2/S or R by one of the popular log transformations.
- State of emergency in commercial SPC software packages: Shewhart charts (w/ and w/o runs rules) dominate, sometimes EWMA is implemented, rarely CUSUM and never SR.

ADVANCED MASK TI TECHNOLOGY CENTER