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Some definitions

Sequential change-point model

(i) Sequential change-point model

Modeling of a stochastic process with a possible distributional change

Sequence of random variables X1,X2, . . . with pdf
{
F(i)

}
and

a certain (unknown) time point m = change-point with

F(i) =

{
F0 , i < m

F1 , i ≥ m
.

Example: F0 = N (0, 1) , F1 = N (1, 1) + independence

Notation:
�
�

�
�

{
Xi

}m−1

i=1
– process in control,{

Xi

}∞
i=m

– process out of control.



Accurate ARL computation for variance monitoring schemes

Some definitions

Control charts

(ii) Control charts

different names, same concepts:
change point detection, continuous inspection, surveillance, monitoring ...

Aim: Detect rapidly and reliably, whether there appeared change-point m!

I Transformation
{
Xi

}
i=1,2,...,n

→ Zn and

I Stopping time L = min
{
n ∈ N : Zn /∈ O

}
,

O = (−∞, ucl ], [lcl , ucl ], [lcl ,∞) . . .

At time point L observation is stopped & the scheme signals an alarm.
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Some definitions

Control charts

Two control chart types under consideration

– the mean monitoring case.

I (1-sided) CUSUM: Page (1954)

Zn = max
{
0,Zn−1 + Xn − k

}
, Z0 = z0 = 0 ,

L = inf {n ∈ N : Zn > h}
(
k = (µ0 + µ1)/2

)
.

I (2-sided) EWMA: Roberts (1959)

Zn = (1− λ)Zn−1 + λXn , Z0 = z0 = µ0 ,

L = inf
{

n ∈ N : |Zn − µ0| > c
√

λ/(2− λ)
}

.
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Some definitions

ARL

(iii) Average Run Length (ARL)

resembles the most popular performance measure.

Notation: Em(.) expectation for given change-point m.

Definition:

ARL =

{
E∞(L) , process in control

E1(L) , process out of control
.

Note that for dealing with the ARL, the sequence {Xi} is (strong)
stationary with the same probability law for all i . Thus, e. g.,

ARL = Eµ(L) =: Lµ .
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ARL computation

Established methods

Established methods of ARL computation

(for control charts monitoring normal mean)

Look, e. g., at the CUSUM-ARL integral equation (Page, 1954):

L(s) = 1 + FX (k − s)L(0) +

∫ h

0
fX (z + k − s)L(z) dz

I N , Markov chain approximation, Brook/Evans (1972),

Lucas/Saccucci (1990)

(equivalent to Nyström method based on midpoint rule).

I exponential, exact, Vardeman/Ray (1985), Gan/Chang (1998).

I N , Gauß-Legendre Nyström method, Vance (1986), Crowder (1987).
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ARL computation

Established methods

Accuracy of different methods for ARL computation (mean)

CUSUM with k = 0.5 , h = 4.389 13 EWMA with λ = 0.1 , c = 2.814 31

(MC: 499.987± .016, 109 rep., 1450’) (MC: 500.007± .016, 109 rep., 1400’)
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ARL computation

Established methods

Variance monitoring and ARL computation

To begin with,

consider batches of size N ≥ 1 and take

S2
n =

1

N − 1

N∑
j=1

(
Xnj − X̄n

)2
, X̄n =

1

N

N∑
j=1

Xnj

or S̃2
n =

1

N

N∑
j=1

(
Xnj − µ0

)2

as variance estimator Vn with df degrees of freedom.
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ARL computation

Established methods

Two control chart types under consideration

– the variance monitoring case.

I (1-sided upper) CUSUM:

Zn = max
{
0,Zn−1 + Vn − k

}
, Z0 = z0 = 0 ,

L = inf {n ∈ N : Zn > h}
(

k =
σ2

1(ln σ2
1 − ln σ2

0)

σ2
1/σ2

0 − 1

)
.

I (1-sided upper) EWMA:

Zn = (1− λ)Zn−1 + λVn , Z0 = z0 = σ2
0 ,

L = inf
{

n ∈ N : Zn > σ2
0 + c

√
λ/(2− λ)

√
2/df σ2

0

}
.



Accurate ARL computation for variance monitoring schemes

ARL computation

Established methods

Accuracy of different methods for ARL computation (variance)

df = 1

CUSUM-S2 with k = 1.46 , h = 10 EWMA-S2 with λ = 0.025 , c = 1.661 865
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ARL computation

Established methods

Accuracy of different methods for ARL computation (variance)

df = 4

CUSUM-S2 with k = 1.285 , h = 2.921 EWMA-S2 with λ = 0.18 , c = 2.909 223
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ARL computation

New approach

Cause of the accuracy problem

is the behavior of the density of S2 at 0.

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

s

f d
f(s

)

df=1
df=2
df=3
df=4



Accurate ARL computation for variance monitoring schemes

ARL computation

New approach

New approach

What could we do?

I Product Nyström method: better than established ones, but
worse than

I collocation.

Up to now, collocation for ARL computation was used by:

I Fellner (1990),

I Gianino/Champ/Rigdon (1990),

I Calzada/Scariano (2003).

(ARL of mean monitoring control charts only!)
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ARL computation

New approach

Collocation for ARL computation of variance control charts

I Approximation of L(s) by linear combinations of

I (piecewise) Chebyshev polynomials (with additional
exponential term for CUSUM),

I numerical quadrature of all integrals (less than 30 nodes are
needed!),

I and solution of a linear equation system.
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ARL computation

New approach

Sketch for the one-sided upper EWMA-S2 control chart

c∗u = σ2
0 + c

√
λ/(2− λ)

√
2/df σ2

0 ,

Tj(z) = cos
(
j arccos(z)

)
, j = 0, 1, . . . ,N − 1 , z ∈ [−1, 1] ,

T ∗
j (z) = Tj−1

(
(2z − c∗u)/c∗u

)
, j = 1, 2, . . . ,N , z ∈ [0, c∗u ] ,

zi =
c∗u
2

[
1 + cos

(
(2i − 1)/(2N) π

)]
, i = 1, 2, . . . ,N

N∑
j=1

cj T ∗
j (zi ) = 1 +

N∑
j=1

cj

∫ c∗u

(1−λ) zi

T ∗
j (x)

1

λ
fdf

(
x − (1− λ) zi

λ

)
dx .
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ARL computation

New approach

Accuracy of different methods for ARL computation (variance)

df = 1

CUSUM-S2 with k = 1.46 , h = 10 EWMA-S2 with λ = 0.025 , c = 1.661 865
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ARL computation

New approach

Accuracy of different methods for ARL computation (variance)

df = 4

CUSUM-S2 with k = 1.285 , h = 2.921 EWMA-S2 with λ = 0.18 , c = 2.909 223
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ARL computation

New approach

Postscript for CUSUM-S2 schemes

While χ2
df random variables

with even degrees of freedom df

are Erlang distributed,

we could apply the results of Knoth (1998).
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Side effects

One-sided EWMA-S2 chart for monitoring variance

Zn = (1− λ)Zn−1 + λS2
n , n ≥ 1 , Z0 = z0 = σ2

0 = 1 , S2
n = 1/4

5∑
j=1

(Xnj − X̄n)
2 ,

L = inf
{

n ∈ N : Zn > σ2
0 + c

√
λ/(2− λ)

√
2/4 σ2

0

}
,

E∞(L) = 250 , σ2
1 = 1.52 (as in Mittag et al., 1998).
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Side effects

One-sided EWMA-S2 chart for monitoring variance II

Zn = (1− λ)Zn−1 + λS2
n , n ≥ 1 , Z0 = z0 = σ2

0 = 1 , S2
n = 1/4

5∑
j=1

(Xnj − X̄n)
2 ,

L = inf
{

n ∈ N : Zn > σ2
0 + c

√
λ/(2− λ)

√
2/4 σ2

0

}
,

E∞(L) = 250 , σ2
1 = 1.52 (as in Mittag et al., 1998).
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Side effects

One-sided EWMA-S2 chart for monitoring variance III

Zn = (1− λ)Zn−1 + λS2
n , n ≥ 1 , Z0 = z0 = σ2

0 = 1 , S2
n = 1/4

5∑
j=1

(Xnj − X̄n)
2 ,

L = inf
{

n ∈ N : Zn > σ2
0 + c

√
λ/(2− λ)

√
2/4 σ2

0

}
,

E∞(L) = 250 , σ2
1 = 1.52 (as in Mittag et al., 1998).
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Ê1(L) = 1.3628± 0.0000,

109 rep.

P∞(L = 1) ≈ 0.4!
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Side effects

EWMA: S2 based vs. ln S2 based control charts

Crowder/Hamilton (1992)

Note:
Here, all schemes possess a reflecting barrier at σ2

0 and ln σ2
0, resp.

λ = 0.05 λ = 0.16 λ = 0.32
σ2 lnS2 S2 lnS2 S2 lnS2 S2

1 200.00 200.00 200.00 200.00 200.00 200.00
1.12 43.04 37.78 45.59 43.44 48.93 50.50
1.22 18.10 16.71 18.54 17.42 19.63 20.05
1.32 10.75 10.32 10.52 9.85 10.73 10.74
1.42 7.63 7.39 7.20 6.68 7.08 6.93
1.52 5.97 5.74 5.49 5.03 5.24 5.03
22 3.17 2.74 2.77 2.33 2.44 2.18
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Resumé

Resumé

I Variance control charts were often applied, but the accuracy
in computing their ARL values was poor.

I Collocation allows to cure these accuracy problems.

I Now, we are able to compute the ARL of EWMA-S2 control
charts for very small λ.

I It is not restricted to variance schemes. All distributions of
chart statistics with restricted supports could be treated in
this way.

I Collocation could be used for the steady-state ARL as well.

I Similar ideas could be used for (simultaneous) X̄ -S2 schemes.
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Appendix

Collocation for the mean monitoring

Accuracy of different methods for ARL computation (mean)

CUSUM with k = 0.5 , h = 4.389 13 EWMA with λ = 0.1 , c = 2.814 31

(MC: 499.987± .016, 109 rep., 1450’) (MC: 500.007± .016, 109 rep., 1400’)
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Appendix

CUSUM-S2 scheme at work

One-sided CUSUM-S2 scheme
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σ0 = 1 , σ1 = 1.5 , batch size N = 5 ,

Z0 = 0 , Zn = max{0, Zn−1 + S2
n − k} ,

L = min{n ∈ N : Zn > h} ,

k = 1.46 , h = 3.725 , E∞(L) = 500 , E1(L) = 5.86 .
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Appendix

Chart performance measurement

Measuring control chart performance

I In order to evaluate ”true” online procedures, first of all one
has to take into account

I elapsed time or
I number of proceeded statistical objects.

I The control chart raises a signal with Prob. 1, whether there
was a change or not.

; Thus, assess properties of stopping time L!
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