Simultaneous EWMA charts for controlling mean and variance in the presence of autocorrelation

Sven Knoth

Department of Statistics,
Europe University Viadrina, Postfach 1786, 15207 Frankfurt(Oder), Germany
http://w3stat.euv-frankfurt-o.de

1. Simultaneous charts and autocorrelation

2. Modified EWMA charts

3. Residual EWMA charts
4. Comparison and Conclusions

simultaneous charts for mean and variance

Montgomery (1991), Gan (1995),
Kanagawa and Arizono (1997),

Mittag and
Stemann (1997)
control charts and autocorrelated data

Goldsmith and
Woodward (1961),

Bagshaw and Johnson (1975),

Nikiforov (1975/79),
Vasilopoulos and Stamboulis (1978),

Alwan (1989),
Amin, Schmid,
and Frank (1997),
198x, 199x ...
simultaneous \& correlation Lu and Reynolds (1999),

Knoth, Schmid and Schöne (1998):
$\bar{X}-S^{2}$ and $\bar{X}-R$ Shewhart chart
\Downarrow

EWMA ?

Change point model

target process $\left\{Y_{i, j}\right\}$, observed $\left\{X_{i, j}\right\}$
i - sample number, j - number within the sample (batch size n)

$$
X_{i, j}= \begin{cases}Y_{i, j} & \text { for } i<q \\ \mu_{0}+\Delta\left(Y_{i, j}-\mu_{0}\right)+a \sqrt{\gamma_{0}} & \text { for } i \geq q\end{cases}
$$

with change point q and

$$
\mu_{0}=E\left(Y_{i, j}\right), \gamma_{0}=\operatorname{Var}\left(Y_{i, j}\right) .
$$

$~$

$$
\begin{aligned}
E\left(X_{i, j}\right) & =\left\{\begin{array}{ll}
\mu_{0} & \text { for } i<q \\
\mu_{0}+a \sqrt{\gamma_{0}} & \text { for } i \geq q
\end{array},\right. \\
\operatorname{Var}\left(X_{i, j}\right) & = \begin{cases}\gamma_{0} & \text { for } i<q \\
\Delta^{2} \gamma_{0} & \text { for } i \geq q\end{cases}
\end{aligned}
$$

EWMA chart (iid)

$$
\begin{aligned}
& Z_{\bar{X}, i} \overline{i \geq 1}\left(1-\lambda_{1}\right) Z_{\bar{X}, i-1}+\lambda_{1} \bar{X}_{i}, \\
& Z_{\bar{X}, 0}=E_{0}(\bar{X})=\mu_{0}, \\
& Z_{S^{2}, i} \overline{i \geq 1}\left(1-\lambda_{2}\right) Z_{S^{2}, i-1}+\lambda_{2} S_{i}^{2}, \\
& Z_{S^{2}, 0}=E_{0}\left(S^{2}\right)=\gamma_{0}, \\
& \tau=\inf \left\{i \in \mathbb{N}:\left|Z_{\bar{X}, i}-\mu_{0}\right|>x_{i i d} \sqrt{\frac{\lambda_{1}}{2-\lambda_{1}}} \sqrt{\operatorname{Varo}_{0}(\bar{X})}\right. \\
& \quad \text { or } \quad Z_{S^{2}, i}-\gamma_{0}>s_{i i d}\left.\sqrt{\frac{\lambda_{2}}{2-\lambda_{2}}} \sqrt{\operatorname{Var}_{0}\left(S^{2}\right)}\right\} .
\end{aligned}
$$

(one-sided for the variance !!)

Average Run Length - ARL

- most popular performance measure of control charts
" expectation of the stopping time τ "

1. in-control
$\leftrightarrow q=\infty$ or $a=0, \Delta=1$:
$E_{0}(\tau)$
2. out-of-control
$\leftrightarrow q=1$ and $a \neq 0$ or $\Delta>1$
$E_{1}(\tau)$
further:
conditional, steady-state delays, quantiles ...

Autocorrelation model

independence between batches

$$
\mathbf{Y}_{i}=\left(Y_{i, 1}, Y_{i, 2}, \ldots, Y_{i, n}\right)^{\prime} \quad, i=1,2, \ldots
$$

dependence within the batch: $A R(1)$

$$
\begin{aligned}
Y_{i, j}= & \mu_{0}+\alpha\left(Y_{i, j-1}-\mu_{0}\right)+\varepsilon_{i, j} \\
& j=1,2, \ldots, n \\
& |\alpha|<1 \\
& \varepsilon_{i, j} \sim \mathcal{N}\left(0, \sigma_{0}^{2}\right)(\mathrm{iid})
\end{aligned}
$$

$~$

$$
\begin{aligned}
E\left(Y_{i, j}\right) & =\mu_{0} \\
\operatorname{Var}\left(Y_{i, j}\right) & =\frac{\sigma_{0}^{2}}{1-\alpha^{2}}=\gamma_{0}
\end{aligned}
$$

Influence of the autocorrelation coefficient α on the ARL

Main concepts of control charts for correlated data

start with fit of appropriate time series model - here $\operatorname{AR}(1)$

modified charts
adapt
variance and critical value
\rightarrow correct in-control ARL \Downarrow
transformed threshold for original data
residual charts model residuals are iid and the empirical residuals approximately as well (starting problems)
\Downarrow
classical charts on transformed data

special case:

cusum charts of Nikiforov (1975/79), Schmid (1997)

Modified $\bar{X}-S^{2}$ EWMA chart I

adapted moments

$$
\begin{gathered}
\text { with autocorrelation function } \\
\gamma_{h}=\operatorname{Cov}_{0}\left(X_{i, j}, X_{i, j+h}\right) \\
\operatorname{Var}_{0}(\bar{X})=\frac{1}{n} \sum_{|j|<n}\left(1-\frac{|j|}{n}\right) \gamma_{j}, \\
E_{0}\left(S^{2}\right)=\gamma_{0}-\frac{2}{n-1} \sum_{j=1}^{n-1}\left(1-\frac{j}{n}\right) \gamma_{j}, \\
\operatorname{Var}_{0}\left(S^{2}\right)= \\
\frac{2}{(n-1)^{2}}\left[\sum_{v, j=1}^{n} \gamma_{v-j}^{2}-\frac{2}{n} \sum_{v=1}^{n}\left(\sum_{j=1}^{n} \gamma_{v-j}\right)^{2}+\frac{1}{n^{2}}\left(\sum_{v, j=1}^{n} \gamma_{v-j}\right)^{2}\right] \\
\operatorname{AR}(1): \gamma_{h}=\frac{\alpha^{|h|} \sigma_{0}^{2}}{1-\alpha^{2}}
\end{gathered}
$$

Modified $\bar{X}-S^{2}$ EWVMA chart $I I$

adapted critical values

prespecify in-control ARL \rightarrow determine related critical values $\left(x_{m}, s_{m}\right)$

1. approximate ARL by Markov chain approach (Brook/Evans 1972):

- 2dimensional chain,
- transition probabilities:
joint distribution of $\left(\bar{X}, S^{2}\right)$
$~$ Schöne/Schmid (1997/99)

$$
\begin{aligned}
& P_{\bar{X}, S^{2}}\left(|\bar{X}| \leq x, S^{2} \leq s\right)= \\
& \qquad \begin{array}{l}
\sum_{i, j=0}^{\infty} \frac{f_{i+1, j}}{\sqrt{2 \pi}} \frac{4 \beta}{2 j+1} g_{i}^{(n+1)}(s) x^{2 j+1}+ \\
\quad+\chi_{n-1}^{2}\left(\frac{s}{\beta}\right)\left[\Phi\left(\frac{x}{\sqrt{b_{0}}}\right)-\Phi\left(-\frac{x}{\sqrt{b_{0}}}\right)\right] .
\end{array}
\end{aligned}
$$

2. additional condition:
univariate charts behave symmetrically
3. two nonlinear equations, two unknown parameters
\rightarrow solution by 2dimensional secant rule
4. in study:
maximal dimension $\approx 1600=40 \cdot 40$.

Residual $\bar{X}-S^{2}$ EWMA chart I

standardized residuals - $A R(1)$

$$
\begin{aligned}
& \text { (} X \text { - observed, } Y \text { - target) } \\
& \widehat{\varepsilon}_{i, j}=\frac{X_{i, j}-\hat{X}_{i, j}}{\sqrt{\operatorname{Var}_{0}\left(X_{i, j}-\hat{X}_{i, j}\right)}}, \\
& \hat{X}_{i, j}=\left\{\begin{array}{ll}
\mu_{0} & , j=1 \\
\mu_{0}+\alpha\left(X_{i, j-1}-\mu_{0}\right) & , j>1
\end{array},\right. \\
& \operatorname{Var}_{0}\left(X_{i, j}-\widehat{X}_{i, j}\right)=\left\{\begin{array}{cc}
\gamma_{0} & , j=1 \\
\sigma_{0}^{2} & , j>1
\end{array},\right. \\
& X_{i, j}-\hat{X}_{i, j} \underset{i \geq q}{=} \begin{cases}\Delta\left(Y_{i, 1}-\mu_{0}\right)+a \sqrt{\gamma_{0}} & , j=1 \\
\Delta \varepsilon_{i, j}+a \sqrt{\gamma_{0}}(1-\alpha) & , j>1\end{cases} \\
& \overline{\hat{\varepsilon}}_{i}=\frac{1}{n} \sum_{j=1}^{n} \widehat{\varepsilon}_{i, j} \quad, \widehat{S}_{i}^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(\widehat{\varepsilon}_{i, j}-\overline{\hat{\varepsilon}}_{i}\right)^{2}, \\
& E_{0}\left(\overline{\hat{\varepsilon}}_{i}\right)=0 \quad, \operatorname{Var}_{0}\left(\overline{\hat{\varepsilon}}_{i}\right)=1 / n, \\
& E_{0}\left(\widehat{S}_{i}^{2}\right)=1 \quad, \operatorname{Var}_{0}\left(\widehat{S}_{i}^{2}\right)=2 /(n-1) .
\end{aligned}
$$

Residual $\bar{X}-S^{2}$ EWMMA chart $I I$

 computation of the ARL
1. Gan (1995): ~ Waldmann (1986)

2. here:

$$
\begin{aligned}
E_{0}\left(\tau_{\text {biv }}\right) & =\sum_{i=0}^{\infty} P_{0}\left(\tau_{\text {biv }}>i\right) \\
& =\sum_{i=0}^{\infty} P_{0}\left(\tau_{1}>i\right) \cdot P_{0}\left(\tau_{2}>i\right) \\
& \approx \sum_{i=0}^{\infty} \mathbf{p}_{1}^{\prime} \mathbf{P}_{1}^{i} \mathbf{1} \times \mathbf{p}_{2}^{\prime} \mathbf{P}_{2}^{i} \mathbf{1} \\
& =\mathbf{p}_{1}^{\prime} \mathbf{Z} \mathbf{p}_{2} \quad, \mathbf{Z}=\sum_{i=0}^{\infty} \mathbf{P}_{1}^{i} \mathbf{1} \mathbf{1}^{\prime}\left(\mathbf{P}_{2}^{\prime}\right)^{i}
\end{aligned}
$$

Z solves matrix equation

$$
\mathrm{Z}=11^{\prime}+\mathrm{P}_{1} \mathrm{Z} \mathrm{P}_{2}^{\prime}
$$

or equivalent Sylvester matrix equation

$$
\begin{aligned}
& \left(\mathbf{I}-\mathbf{P}_{1}\right)^{-1} \mathrm{Z}+\mathrm{Z} \mathrm{P}_{2}^{\prime}\left(\mathbf{I}-\mathrm{P}_{2}^{\prime}\right)^{-1}= \\
& \quad\left(\mathbf{I}-\mathbf{P}_{1}\right)^{-1} \mathbf{1} \mathbf{1}^{\prime}\left(\mathbf{I}-\mathbf{P}_{2}^{\prime}\right)^{-1} .
\end{aligned}
$$

Comparison Study

$$
\begin{aligned}
\mu_{0} & =0 \\
\Rightarrow X_{i, j} & =\Delta Y_{i, j}+a \sqrt{\gamma_{0}}, \\
Y_{i, j} & =\alpha Y_{i, j-1}+\varepsilon_{i, j} \\
q & =1 \\
a & \in\{0, .25, \ldots, 1.5,2\} \\
\Delta & \in\{1,1.1, \ldots, 1.5,1.75,2\} \\
E_{0}(\tau) & =500 . \\
(n, \alpha) & =(5, .3) \text { or }(10, .5) .
\end{aligned}
$$

Monte Carlo with size 10^{6}.

Optimal $\left(\lambda_{1}, \lambda_{2}\right)$ and related $A R L$

Modified chart

	a				
Δ	0.00	0.25	0.50	\ldots	2.00
1.00	500	41.59	14.21	\ldots	1.68
		$(.05, .50)$	$(.10, .05)$	\ldots	$(1.0, .05)$
1.10	64.00	31.81	13.42	\ldots	1.70
	$(1.0, .05)$	$(.05, .05)$	$(.10, .10)$	\ldots	$(1.0, .05)$
1.20	23.59	19.63	11.66	\ldots	1.71
	$(1.0, .05)$	$(.10, .05)$	$(.10, .10)$	\ldots	$(.50,1.0)$
\vdots					
2.00	2.48	2.44	2.37	\ldots	1.47
	$(1.0, .25)$	$(1.0, .25)$	$(1.0, .25)$	\ldots	$(1.0, .50)$

Residual chart

	a				
Δ	0.00	0.25	0.50	\ldots	2.00
1.00	500	41.31	14.17	\ldots	1.69
		$(.05,1.0)$	$(.10,1.0)$	\ldots	$(1.0,1.0)$
1.10	59.40	31.08	13.32	\ldots	1.70
	$(1.0, .05)$	$(.05, .05)$	$(.10, .25)$	\ldots	$(.50,1.0)$
1.20	21.94	18.70	11.37	\ldots	1.71
	$(1.0, .05)$	$(.10, .05)$	$(.10, .10)$	\ldots	$(.50,1.0)$
2.00	2.30	2.27	2.21	\cdots	1.42
	$(1.0, .50)$	$(1.0, .50)$	$(1.0, .50)$	\ldots	$(1.0, .50)$

Conclusions

- pure shifts: both schemes act similarly, $a \uparrow \Rightarrow$ optimal $\lambda_{1} \uparrow$
($\Delta=2 \rightarrow$ overall optimal $\lambda_{1}=.25 / .5$)
- $\Delta>1$: residual chart performs better
- modified chart:

1. more attractive for practitioner,
2. extremely time-consuming determination of critical values and worse performance.

- residual chart:

1. more artificial appearance,
2. quick determination of critical values and better performance.

- as usual, EWMA is better for small changes than Shewhart chart.

References

F.F.Gan (1995) Joint monitoring of process mean and variance using exponentially weighted moving average control charts.
Technometrics 37, 446-453.
S. Knoth, W. Schmid \& A. Schöne (1998) Simultaneous Shewhart-type charts for the mean and the variance of a time series.
To appear in: H.-J. Lenz \& P.-Th. Wilrich (Eds.) Frontiers of Statistical Quality Control 6, Physica Verlag, Heidelberg, Germany.
S. Knoth \& W. Schmid (1999) Monitoring the mean and the variance of a stationary process. Arbeitsbericht 130, Europa-Universität Viadrina, Frankfurt(Oder), Germany.
C.-W. Lu \& M. R. Reynolds, Jr. (1999) Control charts for monitoring the mean and variance of autocorrelated processes.
J. Qual. Tech. 31, no. 3, 259-274.
A.Schöne \& W. Schmid (1999) On the joint distribution of a quadratic and a linear form in normal variables.
To appear in J. Multiv. Anal.

