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The change-point model

Modeling of a stochastic process with a possible distributional change

Sequence of random variables X1,X2, . . . with cdf
{
F(i)

}
and

a certain (unknown) time point m = change-point with

F(i) =

{
F0 , i < m

F1 , i ≥ m
.

Example: F0 = N (µ0, 1) , F1 = N (µ1, 1) + independence

Notation:
�
�

�
�

˘
Xi

¯m−1

i=1
– process in control,˘

Xi

¯∞
i=m

– process out of control.



Control charts – SPC at work

different names, same concepts:
change point detection, continuous inspection, surveillance, monitoring ...

Aim: Detect rapidly and reliably, whether there appeared change-point m!

I Transformation
{
Xi

}
i=1,2,...,n

→ Zn and

I Stopping time L = min
{
n ∈ N : Zn /∈ O = [c∗l , c

∗
u ]

}
,

At time point L observation is stopped & the scheme signals an alarm.

L is a random value on N = {1, 2, 3, . . .}.



Measuring control chart performance

1. Shewhart (192x,193x) similar to tests: error probabilities,

2. Aroian/Levene (1950) average spacing number and
average efficiency number,

3. Girshick/Rubin (1952) Bayesian framework,

4. Page (1954) introduced term ARL as the average number of
articles inspected between to successive occasions when
rectifying action is taken.

5. Barnard (1959) If it were thought worthwile one could use
methods analogous to these given by Page (1954) and
estimate the average run length as a function of the departure
from the target value. However, as I have already indicated,
such computations could be regarded as having the function
merely of avoiding unemployment amongst mathematicians.



Average Run Length (ARL)

Notation: Em(.) expectation for given change-point m.

Definition:

ARL =

{
E∞(L) , process in control

E1(L) , process out of control
.

Note that for dealing with the ARL, the sequence {Xi} is (strong)
stationary with the same probability law for all i . Thus, e. g.,

ARL = Eµ(L) =: Lµ .



Measuring control chart performance II

6. Shiryaev (1961/3) random change-point model

P(M = m) =

{
π , m = 0

(1− π) (1− p)m−1p , m > 0
, π ∈ [0, 1) , p ∈ (0, 1)

and minimize{
Pπ,p(L < M) + c Eπ,p(L−M)+ for all s. t. L

Eπ,p(L−M|L ≥ M) for all s. t. L with Pπ,p(L < M) ≤ α

7. ... 9.
�� ��E∞(L) ≥ A

7. Roberts (1966) D := lim
m→∞

Em

(
L−m + 1 | L ≥ m

)
(”steady-state ARL”, R. ”replaced”∞ by 9)

8. Lorden (1971) W := sup
m≥1

ess supEm

(
(L−m + 1)+ | Fm−1

)
9. Pollak/Siegmund (1975) DPS := sup

m≥1
Em

(
L−m + 1 | L ≥ m

)



Anyway,

the ARL is the dominating measure!

Possible reasons:

I Shewhart chart

W = D = DPS = L = E1(L) = Em(L−m + 1|L ≥ m).

I CUSUM

W = DPS = L,

modifications: D = DPS 6= L.

But:

I EWMA

All measures provide different values.

I ...



Lai 1995

Sequential changepoint detection in quality control and dynamical systems,
J. R. Stat. Soc., Ser. B, 57, 613-658.

I The ARL constraint Eθ0(T ) ≥ γ stipulates a long expected duration
to false alarm. However, a large mean of T does not necessarily
imply that the probability of having a false alarm before some
specified time m is small. In fact, it is easy to construct positive
integer-value random variables T with a large mean γ and also
having a high probability that T = 1.

I In practice, the system only fails after a very long in-control period
and we expect many false alarms before the first correct alarm. It is
therefore much more relevant to consider

(a) the probability of no false alarm during a typical (steady state)
segment of the base-line period and

(b) the expected delay in signaling a correct alarm,

instead of the ARL which is the mean duration to the first alarm
assuming a constant in-control or out-of-control value.



Frisén 2003

Statistical Surveillance. Optimality and Methods.
International Statistical Review, 71, 403-434.

The whole subsection 3.5 (titled ”ARL”) is dedicated to a
reckoning with ”the criterion of minimal ARL”.

For demonstrating the possible drawbacks of utilizing ”the criterion
of minimal ARL”, let us consider one-sided EWMA-S2 control
charts, which resemble good candidates for illuminating this
phenomenon.



One-sided EWMA-S2 chart for monitoring variance

Zi = (1− λ)Zi−1 + λS2
i , i ≥ 1 , Z0 = z0 = σ2

0 = 1 , S2
i = 1/4

5X
j=1

(Xij − X̄i )
2 ,

L = inf
n

i ∈ N : Zi > σ2
0 + c

p
λ/(2− λ)

p
2/4 σ2

0

o
,

E∞(L) = 250 , σ2
1 = 1.52 (as in Mittag et al., 1998).

4.5

5

5.5

6

6.5

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
1(

L
)

λ

Mittag et al. (1998)

true min.



One-sided EWMA-S2 chart for monitoring variance II

Zi = (1− λ)Zi−1 + λS2
i , i ≥ 1 , Z0 = z0 = σ2

0 = 1 , S2
i = 1/4

5X
j=1

(Xij − X̄i )
2 ,

L = inf
n

i ∈ N : Zi > σ2
0 + c

p
λ/(2− λ)

p
2/4 σ2

0

o
,

E∞(L) = 250 , σ2
1 = 1.52 (as in Mittag et al., 1998).
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λ = 0.000 042,

c = 0.000 064 375 308,

Ê∞(L) = 250.103±0.091,

Ê1(L) = 1.3628± 0.0000,

109 rep.

P∞(L = 1) ≈ 0.4!



One-sided EWMA-S2 chart for monitoring variance III

Zi = (1− λ)Zi−1 + λS2
i , i ≥ 1 , Z0 = z0 = σ2

0 = 1 , S2
i = 1/4

5X
j=1

(Xij − X̄i )
2 ,

L = inf
n

i ∈ N : Zi > σ2
0 + c

p
λ/(2− λ)

p
2/4 σ2

0

o
,

E∞(L) = 250 , σ2
1 = 1.52 (as in Mittag et al., 1998).
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steady-state ARL λ = 0.000 042,

c = 0.000 064 375 308,

Ê∞(L) = 250.103±0.091,

Ê1(L) = 1.3628± 0.0000,

109 rep.

P∞(L = 1) ≈ 0.4!



Assessing the steady-state

Fm−1 = σ
(
X1, . . . ,Xm−1

)
, F∗m−1 = σ

(
Fm−1 ∩ {L > m − 1}

)
,

D∗
(m) = Em

(
L−m + 1 | F∗m−1

)
= Lµ1(Z

∗
m−1) for Markovian schemes ,

Z ∗m−1 ∼ f ∗m−1(·) ,

ψµ0(z) = lim
m→∞

f ∗m−1(z) (cf. to Madson/Conn, 1973) ,

D∗ = Lµ1(Z
∗) , Z ∗ ∼ ψµ0(·) name D∗ ”steady-state delay” ,

E (D∗) =

∫
O

ψµ0(z)Lµ1(z) dM(z)

= lim
m→∞

∫
O

f ∗m−1(z)Lµ1(z) dM(z) = D (steady-state ARL)

≈ E (D∗
(m)) = Em

(
L−m + 1 | L ≥ m

)
already for small m.



Links between D∗ and previous measures

D∗
(m) = Em

(
L−m + 1 | F∗m−1

)
,

Em

(
[L−m + 1]+ | Fm−1

)
= D∗

(m) · I{L>m−1} + 0 · I{L≤m−1} ,

W = sup
m≥1

ess sup (D∗
(m)) = ess supD∗ ,

DPS = sup
m≥1

E (D∗
(m)) .

Z ∗ is random variable on O with z0 ∈ O and density ψµ0(·):

ARL = Lµ1(z0) ,

W = ess supLµ1(Z
∗) ,

D = E
(
Lµ1(Z

∗)
)
,

DPS = max{Lµ1 ,D} .



One-sided Schemes

I CUSUM: Page (1954)

Zn = max
{
0,Zn−1 + Xn − k

}
, Z0 = z0 ,

L = inf {n ∈ N : Zn > h}
(
k = (µ0 + µ1)/2

)
I EWMA: Roberts (1959) (reflecting barrier – Waldmann (1986), Gan (1993))

Zn = max
{
z∗reflect, (1− λ) Zn−1 + λXn

}
, Z0 = z0 ,

L = inf
{

n ∈ N : Zn > c
√
λ/(2− λ)

}
, z∗reflect = zr

√
λ/(2− λ)

I GRSR: Girshick/Rubin (1952), Shiryaev (1963/76), Roberts (1966)

Zn = (1 + Zn−1) exp(Xn − k) , Z0 = z0 ,

L = inf {n ∈ N : Zn > g}
(
exp

ˆ
(µ1 − µ0) Xn − (µ2

1 − µ2
0)/2

˜)



Dealing with D∗ for one-sided schemes

survival function of D∗
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Dealing with D∗ for one-sided EWMA schemes

survival function of D∗
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Two-sided Schemes

I CUSUM: coupling of 1-sided schemes

I Crosier-CUSUM (1986)

Zn =

8<:0 , Cn ≤ k

(Zn−1 + Xn) ·
„

1− k

Cn

«
, Cn > k

, Cn = |Zn−1 + Xn | for n ≥ 1 ,

L = inf {n ∈ N : |Zn| > h}

I EWMA: Roberts (1959)

Zn = (1− λ) Zn−1 + λ Xn , Z0 = z0 , L = inf
n

n ∈ N : |Zn| > c
p

λ/(2− λ)
o

I GRSR: Pollak/Siegmund (1985) – Zn =
(
Z+

n + Z−n
)
/2

performs like coupling of 1-sided schemes Zn = max{Z+
n ,Z

−
n } ; coupling

(PS: Lµ1 = 11.142, E(D∗) = 9.644, coupling: Lµ1 = 11.142, E(D∗) = 9.630,

both: Lµ0 = 500)



Dealing with D∗ for two-sided schemes

survival function of D∗
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α worst case ARL

Definition: Wα = inf
{
w : P(D∗ > w) ≤ α

}
chart

shift ∆
measure

0 0.5 1.0 1.5 2.0 2.5 3.0

689 39 10.0 5.1 3.4 2.6 2.2 L
* 42 12 6.3 4.3 3.4 2.8 W.05

EWMA * 42 12 6.6 4.7 3.6 3.0 W.01

* 43 13 7.0 5.0 3.9 3.3 W.001

* 45 14 8.2 6.0 4.8 4.1 W<10−9

CUSUM 724 34 9.9 5.6 3.9 3.1 2.6 L/W
GRSR 697 33 10.4 6.2 4.4 3.5 2.9 L/W

Roberts (1966) A comparison of some control chart procedures.
Technometrics, 8, 411-430.

λ = 0.25, c = 2.87, one-sided, no reflexion (here reflected at zr = −6)



Revisiting Mittag et al. (1998)

Their ”winning” scheme is (for monitoring normal variance)

Zi = (1− λ)Zi−1 + λS2
i , i ≥ 1 , Z0 = z0 = σ2

0 = 1 ,

S2
i = 1/4

5∑
j=1

(Xij − X̄i )
2 ,

L = inf
{

i ∈ N : Zi > σ2
0 + c

√
λ/(2− λ)

√
2/4σ2

0

}
,

E∞(L) = 250 , λ = .18 , c = 2.91 .



Revisiting Mittag et al. (1998) II

I Replace for EWMA-S2 the original values λ and c by
λ = 0.197 and c = 2.971.

I Remove the lnS2 based and the S based schemes, and deploy
CUSUM-S2:

Zi = max
{
0,Zi−1 + S2

i − k
}
, i ≥ 1 , Z0 = z0 = 0 ,

E∞(L) = 250 , k = 1.4597 , h = 3.117 .

I Determine as in Mittag et al. the efficiency

measureEWMA/CUSUM-S2

measureShewhart-S2

.



Revisiting Mittag et al. (1998) III
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Revisiting Mittag et al. (1998) IV
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Final advocacy for the steady-state ARL

Dm = Em(L−m + 1|L ≥ m) vs. limit E (D∗)

(different EWMA charts with λ = 0.1, E∞(L) = 500, µ1 = 1)
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Computational remarks

I It seems so that fast accurate computation of

Lµ(z), ψµ(z), P∞(L ≤ n), Pm(L ≤ n + m − 1|L ≥ m − 1), D

is possible for univariate distributions which span to the whole real
line (or at least they ensure smooth transition kernels over O).

I For univariate distributions restricted to the half real line or similar,
collocation (might) provide the same for

Lµ(z), ψµ(z), D .
I Exact results are available in only some cases.

I Monte-Carlo simulations are always possible. They demand,
however, elaborate cpu time. Eventually, they are useful for
validating of results.

I Mostly, the universal Markov chain approach provides suitable
results, while programming efforts remain on a reasonable level.

I All become worse for multivariate distributions or dependent data.



Résumé

I Be cautious in applying the ”minimal ARL criterion”,
especially in the one-sided case.

I Use the ”steady-state ARL criterion”. GRSR is asymptotically
optimal in the one-sided case. The performance differences
between the common schemes are practically negligible. Thus,
look for the ”steady-state ARL” optimal mode of your favorite
scheme/chart.

I The pessimistic user has to apply the CUSUM scheme, which
operates with probabilities of 10 % and considerably more
under worst case condition.

I Use the Markov chain approach in the first place as analysis
tool. It provides all the information you need with sufficient
accuracy and parsimonious expenditure of writing program
code. Monte-Carlo simulations might complete your
quantitative analysis.


	Notational Preliminaries
	History and drawbacks
	History
	Criticism
	Drawbacks of the ''minimal ARL criterion''

	Concepts in detail
	The steady-state
	Description of the control charts/schemes
	Some survival function examples of the steady-state delay
	A new worst case ARL
	''Take the steady-state ARL!''

	Computational remarks
	Résumé

